Metamath Proof Explorer


Theorem bj-sylggt

Description: Stronger form of sylgt , closer to ax-2 . (Contributed by BJ, 30-Jul-2025)

Ref Expression
Assertion bj-sylggt φ x ψ χ φ x ψ φ x χ

Proof

Step Hyp Ref Expression
1 alim x ψ χ x ψ x χ
2 1 imim3i φ x ψ χ φ x ψ φ x χ