Metamath Proof Explorer


Theorem bj-sylggt

Description: Stronger form of sylgt , closer to ax-2 . (Contributed by BJ, 30-Jul-2025)

Ref Expression
Assertion bj-sylggt ( ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) ) → ( ( 𝜑 → ∀ 𝑥 𝜓 ) → ( 𝜑 → ∀ 𝑥 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 alim ( ∀ 𝑥 ( 𝜓𝜒 ) → ( ∀ 𝑥 𝜓 → ∀ 𝑥 𝜒 ) )
2 1 imim3i ( ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) ) → ( ( 𝜑 → ∀ 𝑥 𝜓 ) → ( 𝜑 → ∀ 𝑥 𝜒 ) ) )