Metamath Proof Explorer


Theorem bj-wnfnf

Description: When ph is substituted for ps , this statement expresses nonfreeness in the weak form of nonfreeness ( E. -> A. ) . Note that this could also be proved from bj-nnfim , bj-nnfe1 and bj-nnfa1 . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnfnf
|- F// x ( E. x ph -> A. x ps )

Proof

Step Hyp Ref Expression
1 bj-wnf2
 |-  ( E. x ( E. x ph -> A. x ps ) -> ( E. x ph -> A. x ps ) )
2 bj-wnf1
 |-  ( ( E. x ph -> A. x ps ) -> A. x ( E. x ph -> A. x ps ) )
3 df-bj-nnf
 |-  ( F// x ( E. x ph -> A. x ps ) <-> ( ( E. x ( E. x ph -> A. x ps ) -> ( E. x ph -> A. x ps ) ) /\ ( ( E. x ph -> A. x ps ) -> A. x ( E. x ph -> A. x ps ) ) ) )
4 1 2 3 mpbir2an
 |-  F// x ( E. x ph -> A. x ps )