Metamath Proof Explorer


Theorem bj-zfauscl

Description: General version of zfauscl .

Remark: the comment in zfauscl is misleading: the essential use of ax-ext is the one via eleq2 and not the one via vtocl , since the latter can be proved without ax-ext (see bj-vtoclg ).

(Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)

Ref Expression
Assertion bj-zfauscl
|- ( A e. V -> E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( z = A -> ( x e. z <-> x e. A ) )
2 1 anbi1d
 |-  ( z = A -> ( ( x e. z /\ ph ) <-> ( x e. A /\ ph ) ) )
3 2 bibi2d
 |-  ( z = A -> ( ( x e. y <-> ( x e. z /\ ph ) ) <-> ( x e. y <-> ( x e. A /\ ph ) ) ) )
4 3 biimpd
 |-  ( z = A -> ( ( x e. y <-> ( x e. z /\ ph ) ) -> ( x e. y <-> ( x e. A /\ ph ) ) ) )
5 4 alimdv
 |-  ( z = A -> ( A. x ( x e. y <-> ( x e. z /\ ph ) ) -> A. x ( x e. y <-> ( x e. A /\ ph ) ) ) )
6 5 eximdv
 |-  ( z = A -> ( E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) -> E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) ) )
7 ax-sep
 |-  E. y A. x ( x e. y <-> ( x e. z /\ ph ) )
8 6 7 bj-vtoclg
 |-  ( A e. V -> E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) )