Description: General version of zfauscl .
Remark: the comment in zfauscl is misleading: the essential use of ax-ext is the one via eleq2 and not the one via vtocl , since the latter can be proved without ax-ext (see bj-vtoclg ).
(Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-zfauscl | |- ( A e. V -> E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |- ( z = A -> ( x e. z <-> x e. A ) ) |
|
2 | 1 | anbi1d | |- ( z = A -> ( ( x e. z /\ ph ) <-> ( x e. A /\ ph ) ) ) |
3 | 2 | bibi2d | |- ( z = A -> ( ( x e. y <-> ( x e. z /\ ph ) ) <-> ( x e. y <-> ( x e. A /\ ph ) ) ) ) |
4 | 3 | biimpd | |- ( z = A -> ( ( x e. y <-> ( x e. z /\ ph ) ) -> ( x e. y <-> ( x e. A /\ ph ) ) ) ) |
5 | 4 | alimdv | |- ( z = A -> ( A. x ( x e. y <-> ( x e. z /\ ph ) ) -> A. x ( x e. y <-> ( x e. A /\ ph ) ) ) ) |
6 | 5 | eximdv | |- ( z = A -> ( E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) -> E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) ) ) |
7 | ax-sep | |- E. y A. x ( x e. y <-> ( x e. z /\ ph ) ) |
|
8 | 6 7 | bj-vtoclg | |- ( A e. V -> E. y A. x ( x e. y <-> ( x e. A /\ ph ) ) ) |