Description: General version of zfauscl .
Remark: the comment in zfauscl is misleading: the essential use of ax-ext is the one via eleq2 and not the one via vtocl , since the latter can be proved without ax-ext (see bj-vtoclg ).
(Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-zfauscl | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴 ) ) | |
2 | 1 | anbi1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
3 | 2 | bibi2d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
4 | 3 | biimpd | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
5 | 4 | alimdv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
6 | 5 | eximdv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
7 | ax-sep | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) | |
8 | 6 7 | bj-vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |