Metamath Proof Explorer


Theorem bj-zfauscl

Description: General version of zfauscl .

Remark: the comment in zfauscl is misleading: the essential use of ax-ext is the one via eleq2 and not the one via vtocl , since the latter can be proved without ax-ext (see bj-vtoclg ).

(Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)

Ref Expression
Assertion bj-zfauscl ( 𝐴𝑉 → ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝑧 = 𝐴 → ( 𝑥𝑧𝑥𝐴 ) )
2 1 anbi1d ( 𝑧 = 𝐴 → ( ( 𝑥𝑧𝜑 ) ↔ ( 𝑥𝐴𝜑 ) ) )
3 2 bibi2d ( 𝑧 = 𝐴 → ( ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ↔ ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ) )
4 3 biimpd ( 𝑧 = 𝐴 → ( ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ) )
5 4 alimdv ( 𝑧 = 𝐴 → ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ) )
6 5 eximdv ( 𝑧 = 𝐴 → ( ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) → ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ) )
7 ax-sep 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) )
8 6 7 bj-vtoclg ( 𝐴𝑉 → ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) )