Metamath Proof Explorer


Theorem bj-vtoclg

Description: A version of vtoclg with an additional disjoint variable condition (which is removable if we allow use of df-clab , see bj-vtoclg1f ), which requires fewer axioms (i.e., removes dependency on ax-6 , ax-7 , ax-9 , ax-12 , ax-ext , df-clab , df-cleq , df-v ). (Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-vtoclg.maj ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
bj-vtoclg.min 𝜑
Assertion bj-vtoclg ( 𝐴𝑉𝜓 )

Proof

Step Hyp Ref Expression
1 bj-vtoclg.maj ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 bj-vtoclg.min 𝜑
3 elissetv ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
4 1 2 bj-exlimvmpi ( ∃ 𝑥 𝑥 = 𝐴𝜓 )
5 3 4 syl ( 𝐴𝑉𝜓 )