Metamath Proof Explorer


Theorem bj-zfauscl

Description: General version of zfauscl .

Remark: the comment in zfauscl is misleading: the essential use of ax-ext is the one via eleq2 and not the one via vtocl , since the latter can be proved without ax-ext (see bj-vtoclg ).

(Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)

Ref Expression
Assertion bj-zfauscl A V y x x y x A φ

Proof

Step Hyp Ref Expression
1 eleq2 z = A x z x A
2 1 anbi1d z = A x z φ x A φ
3 2 bibi2d z = A x y x z φ x y x A φ
4 3 biimpd z = A x y x z φ x y x A φ
5 4 alimdv z = A x x y x z φ x x y x A φ
6 5 eximdv z = A y x x y x z φ y x x y x A φ
7 ax-sep y x x y x z φ
8 6 7 bj-vtoclg A V y x x y x A φ