Metamath Proof Explorer


Theorem blocn2

Description: A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocn.8
|- C = ( IndMet ` U )
blocn.d
|- D = ( IndMet ` W )
blocn.j
|- J = ( MetOpen ` C )
blocn.k
|- K = ( MetOpen ` D )
blocn.5
|- B = ( U BLnOp W )
blocn.u
|- U e. NrmCVec
blocn.w
|- W e. NrmCVec
Assertion blocn2
|- ( T e. B -> T e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 blocn.8
 |-  C = ( IndMet ` U )
2 blocn.d
 |-  D = ( IndMet ` W )
3 blocn.j
 |-  J = ( MetOpen ` C )
4 blocn.k
 |-  K = ( MetOpen ` D )
5 blocn.5
 |-  B = ( U BLnOp W )
6 blocn.u
 |-  U e. NrmCVec
7 blocn.w
 |-  W e. NrmCVec
8 eqid
 |-  ( U LnOp W ) = ( U LnOp W )
9 8 5 bloln
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) )
10 6 7 9 mp3an12
 |-  ( T e. B -> T e. ( U LnOp W ) )
11 1 2 3 4 5 6 7 8 blocn
 |-  ( T e. ( U LnOp W ) -> ( T e. ( J Cn K ) <-> T e. B ) )
12 11 biimprd
 |-  ( T e. ( U LnOp W ) -> ( T e. B -> T e. ( J Cn K ) ) )
13 10 12 mpcom
 |-  ( T e. B -> T e. ( J Cn K ) )