| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blocn.8 |  |-  C = ( IndMet ` U ) | 
						
							| 2 |  | blocn.d |  |-  D = ( IndMet ` W ) | 
						
							| 3 |  | blocn.j |  |-  J = ( MetOpen ` C ) | 
						
							| 4 |  | blocn.k |  |-  K = ( MetOpen ` D ) | 
						
							| 5 |  | blocn.5 |  |-  B = ( U BLnOp W ) | 
						
							| 6 |  | blocn.u |  |-  U e. NrmCVec | 
						
							| 7 |  | blocn.w |  |-  W e. NrmCVec | 
						
							| 8 |  | eqid |  |-  ( U LnOp W ) = ( U LnOp W ) | 
						
							| 9 | 8 5 | bloln |  |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) | 
						
							| 10 | 6 7 9 | mp3an12 |  |-  ( T e. B -> T e. ( U LnOp W ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | blocn |  |-  ( T e. ( U LnOp W ) -> ( T e. ( J Cn K ) <-> T e. B ) ) | 
						
							| 12 | 11 | biimprd |  |-  ( T e. ( U LnOp W ) -> ( T e. B -> T e. ( J Cn K ) ) ) | 
						
							| 13 | 10 12 | mpcom |  |-  ( T e. B -> T e. ( J Cn K ) ) |