| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blocn.8 | ⊢ 𝐶  =  ( IndMet ‘ 𝑈 ) | 
						
							| 2 |  | blocn.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑊 ) | 
						
							| 3 |  | blocn.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 4 |  | blocn.k | ⊢ 𝐾  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 5 |  | blocn.5 | ⊢ 𝐵  =  ( 𝑈  BLnOp  𝑊 ) | 
						
							| 6 |  | blocn.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 |  | blocn.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 8 |  | eqid | ⊢ ( 𝑈  LnOp  𝑊 )  =  ( 𝑈  LnOp  𝑊 ) | 
						
							| 9 | 8 5 | bloln | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐵 )  →  𝑇  ∈  ( 𝑈  LnOp  𝑊 ) ) | 
						
							| 10 | 6 7 9 | mp3an12 | ⊢ ( 𝑇  ∈  𝐵  →  𝑇  ∈  ( 𝑈  LnOp  𝑊 ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | blocn | ⊢ ( 𝑇  ∈  ( 𝑈  LnOp  𝑊 )  →  ( 𝑇  ∈  ( 𝐽  Cn  𝐾 )  ↔  𝑇  ∈  𝐵 ) ) | 
						
							| 12 | 11 | biimprd | ⊢ ( 𝑇  ∈  ( 𝑈  LnOp  𝑊 )  →  ( 𝑇  ∈  𝐵  →  𝑇  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 13 | 10 12 | mpcom | ⊢ ( 𝑇  ∈  𝐵  →  𝑇  ∈  ( 𝐽  Cn  𝐾 ) ) |