| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ajfval.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | ajfval.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | ajfval.3 | ⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 4 |  | ajfval.4 | ⊢ 𝑄  =  ( ·𝑖OLD ‘ 𝑊 ) | 
						
							| 5 |  | ajfval.5 | ⊢ 𝐴  =  ( 𝑈 adj 𝑊 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑢  =  𝑈  →  ( BaseSet ‘ 𝑢 )  =  ( BaseSet ‘ 𝑈 ) ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( 𝑢  =  𝑈  →  ( BaseSet ‘ 𝑢 )  =  𝑋 ) | 
						
							| 8 | 7 | feq2d | ⊢ ( 𝑢  =  𝑈  →  ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 )  ↔  𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 ) ) ) | 
						
							| 9 | 7 | feq3d | ⊢ ( 𝑢  =  𝑈  →  ( 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 )  ↔  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑢  =  𝑈  →  ( ·𝑖OLD ‘ 𝑢 )  =  ( ·𝑖OLD ‘ 𝑈 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑢  =  𝑈  →  ( ·𝑖OLD ‘ 𝑢 )  =  𝑃 ) | 
						
							| 12 | 11 | oveqd | ⊢ ( 𝑢  =  𝑈  →  ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) )  ↔  ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 15 | 7 14 | raleqbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑥  ∈  ( BaseSet ‘ 𝑢 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 16 | 8 9 15 | 3anbi123d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 )  ∧  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑢 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) )  ↔  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 )  ∧  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 17 | 16 | opabbidv | ⊢ ( 𝑢  =  𝑈  →  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 )  ∧  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑢 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) }  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 )  ∧  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( BaseSet ‘ 𝑤 )  =  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 19 | 18 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( BaseSet ‘ 𝑤 )  =  𝑌 ) | 
						
							| 20 | 19 | feq3d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 )  ↔  𝑡 : 𝑋 ⟶ 𝑌 ) ) | 
						
							| 21 | 19 | feq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋  ↔  𝑠 : 𝑌 ⟶ 𝑋 ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ·𝑖OLD ‘ 𝑤 )  =  ( ·𝑖OLD ‘ 𝑊 ) ) | 
						
							| 23 | 22 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ·𝑖OLD ‘ 𝑤 )  =  𝑄 ) | 
						
							| 24 | 23 | oveqd | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) )  ↔  ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 26 | 19 25 | raleqbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 28 | 20 21 27 | 3anbi123d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 )  ∧  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) )  ↔  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 29 | 28 | opabbidv | ⊢ ( 𝑤  =  𝑊  →  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑤 )  ∧  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) }  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 30 |  | df-aj | ⊢ adj  =  ( 𝑢  ∈  NrmCVec ,  𝑤  ∈  NrmCVec  ↦  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : ( BaseSet ‘ 𝑢 ) ⟶ ( BaseSet ‘ 𝑤 )  ∧  𝑠 : ( BaseSet ‘ 𝑤 ) ⟶ ( BaseSet ‘ 𝑢 )  ∧  ∀ 𝑥  ∈  ( BaseSet ‘ 𝑢 ) ∀ 𝑦  ∈  ( BaseSet ‘ 𝑤 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑤 ) 𝑦 )  =  ( 𝑥 ( ·𝑖OLD ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 31 |  | ovex | ⊢ ( 𝑌  ↑m  𝑋 )  ∈  V | 
						
							| 32 |  | ovex | ⊢ ( 𝑋  ↑m  𝑌 )  ∈  V | 
						
							| 33 | 31 32 | xpex | ⊢ ( ( 𝑌  ↑m  𝑋 )  ×  ( 𝑋  ↑m  𝑌 ) )  ∈  V | 
						
							| 34 | 2 | fvexi | ⊢ 𝑌  ∈  V | 
						
							| 35 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 36 | 34 35 | elmap | ⊢ ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↔  𝑡 : 𝑋 ⟶ 𝑌 ) | 
						
							| 37 | 35 34 | elmap | ⊢ ( 𝑠  ∈  ( 𝑋  ↑m  𝑌 )  ↔  𝑠 : 𝑌 ⟶ 𝑋 ) | 
						
							| 38 | 36 37 | anbi12i | ⊢ ( ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ∧  𝑠  ∈  ( 𝑋  ↑m  𝑌 ) )  ↔  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋 ) ) | 
						
							| 39 | 38 | biimpri | ⊢ ( ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋 )  →  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ∧  𝑠  ∈  ( 𝑋  ↑m  𝑌 ) ) ) | 
						
							| 40 | 39 | 3adant3 | ⊢ ( ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) )  →  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ∧  𝑠  ∈  ( 𝑋  ↑m  𝑌 ) ) ) | 
						
							| 41 | 40 | ssopab2i | ⊢ { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) }  ⊆  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ∧  𝑠  ∈  ( 𝑋  ↑m  𝑌 ) ) } | 
						
							| 42 |  | df-xp | ⊢ ( ( 𝑌  ↑m  𝑋 )  ×  ( 𝑋  ↑m  𝑌 ) )  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ∧  𝑠  ∈  ( 𝑋  ↑m  𝑌 ) ) } | 
						
							| 43 | 41 42 | sseqtrri | ⊢ { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) }  ⊆  ( ( 𝑌  ↑m  𝑋 )  ×  ( 𝑋  ↑m  𝑌 ) ) | 
						
							| 44 | 33 43 | ssexi | ⊢ { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) }  ∈  V | 
						
							| 45 | 17 29 30 44 | ovmpo | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑈 adj 𝑊 )  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 46 | 5 45 | eqtrid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝐴  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) |