| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmoval.8 | ⊢ 𝐻  =  ( HmOp ‘ 𝑈 ) | 
						
							| 2 |  | hmoval.9 | ⊢ 𝐴  =  ( 𝑈 adj 𝑈 ) | 
						
							| 3 |  | oveq12 | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑢  =  𝑈 )  →  ( 𝑢 adj 𝑢 )  =  ( 𝑈 adj 𝑈 ) ) | 
						
							| 4 | 3 | anidms | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢 adj 𝑢 )  =  ( 𝑈 adj 𝑈 ) ) | 
						
							| 5 | 4 2 | eqtr4di | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢 adj 𝑢 )  =  𝐴 ) | 
						
							| 6 | 5 | dmeqd | ⊢ ( 𝑢  =  𝑈  →  dom  ( 𝑢 adj 𝑢 )  =  dom  𝐴 ) | 
						
							| 7 | 5 | fveq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 )  =  ( 𝐴 ‘ 𝑡 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 )  =  𝑡  ↔  ( 𝐴 ‘ 𝑡 )  =  𝑡 ) ) | 
						
							| 9 | 6 8 | rabeqbidv | ⊢ ( 𝑢  =  𝑈  →  { 𝑡  ∈  dom  ( 𝑢 adj 𝑢 )  ∣  ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 )  =  𝑡 }  =  { 𝑡  ∈  dom  𝐴  ∣  ( 𝐴 ‘ 𝑡 )  =  𝑡 } ) | 
						
							| 10 |  | df-hmo | ⊢ HmOp  =  ( 𝑢  ∈  NrmCVec  ↦  { 𝑡  ∈  dom  ( 𝑢 adj 𝑢 )  ∣  ( ( 𝑢 adj 𝑢 ) ‘ 𝑡 )  =  𝑡 } ) | 
						
							| 11 |  | ovex | ⊢ ( 𝑈 adj 𝑈 )  ∈  V | 
						
							| 12 | 2 11 | eqeltri | ⊢ 𝐴  ∈  V | 
						
							| 13 | 12 | dmex | ⊢ dom  𝐴  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑡  ∈  dom  𝐴  ∣  ( 𝐴 ‘ 𝑡 )  =  𝑡 }  ∈  V | 
						
							| 15 | 9 10 14 | fvmpt | ⊢ ( 𝑈  ∈  NrmCVec  →  ( HmOp ‘ 𝑈 )  =  { 𝑡  ∈  dom  𝐴  ∣  ( 𝐴 ‘ 𝑡 )  =  𝑡 } ) | 
						
							| 16 | 1 15 | eqtrid | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐻  =  { 𝑡  ∈  dom  𝐴  ∣  ( 𝐴 ‘ 𝑡 )  =  𝑡 } ) |