| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmoval.8 | ⊢ 𝐻  =  ( HmOp ‘ 𝑈 ) | 
						
							| 2 |  | hmoval.9 | ⊢ 𝐴  =  ( 𝑈 adj 𝑈 ) | 
						
							| 3 | 1 2 | hmoval | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐻  =  { 𝑡  ∈  dom  𝐴  ∣  ( 𝐴 ‘ 𝑡 )  =  𝑡 } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝑇  ∈  𝐻  ↔  𝑇  ∈  { 𝑡  ∈  dom  𝐴  ∣  ( 𝐴 ‘ 𝑡 )  =  𝑡 } ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑡  =  𝑇  →  ( 𝐴 ‘ 𝑡 )  =  ( 𝐴 ‘ 𝑇 ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑡  =  𝑇  →  𝑡  =  𝑇 ) | 
						
							| 7 | 5 6 | eqeq12d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝐴 ‘ 𝑡 )  =  𝑡  ↔  ( 𝐴 ‘ 𝑇 )  =  𝑇 ) ) | 
						
							| 8 | 7 | elrab | ⊢ ( 𝑇  ∈  { 𝑡  ∈  dom  𝐴  ∣  ( 𝐴 ‘ 𝑡 )  =  𝑡 }  ↔  ( 𝑇  ∈  dom  𝐴  ∧  ( 𝐴 ‘ 𝑇 )  =  𝑇 ) ) | 
						
							| 9 | 4 8 | bitrdi | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝑇  ∈  𝐻  ↔  ( 𝑇  ∈  dom  𝐴  ∧  ( 𝐴 ‘ 𝑇 )  =  𝑇 ) ) ) |