| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmoval.8 |  |-  H = ( HmOp ` U ) | 
						
							| 2 |  | hmoval.9 |  |-  A = ( U adj U ) | 
						
							| 3 | 1 2 | hmoval |  |-  ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) | 
						
							| 4 | 3 | eleq2d |  |-  ( U e. NrmCVec -> ( T e. H <-> T e. { t e. dom A | ( A ` t ) = t } ) ) | 
						
							| 5 |  | fveq2 |  |-  ( t = T -> ( A ` t ) = ( A ` T ) ) | 
						
							| 6 |  | id |  |-  ( t = T -> t = T ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( t = T -> ( ( A ` t ) = t <-> ( A ` T ) = T ) ) | 
						
							| 8 | 7 | elrab |  |-  ( T e. { t e. dom A | ( A ` t ) = t } <-> ( T e. dom A /\ ( A ` T ) = T ) ) | 
						
							| 9 | 4 8 | bitrdi |  |-  ( U e. NrmCVec -> ( T e. H <-> ( T e. dom A /\ ( A ` T ) = T ) ) ) |