| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hmoval.8 |  |-  H = ( HmOp ` U ) | 
						
							| 2 |  | hmoval.9 |  |-  A = ( U adj U ) | 
						
							| 3 |  | oveq12 |  |-  ( ( u = U /\ u = U ) -> ( u adj u ) = ( U adj U ) ) | 
						
							| 4 | 3 | anidms |  |-  ( u = U -> ( u adj u ) = ( U adj U ) ) | 
						
							| 5 | 4 2 | eqtr4di |  |-  ( u = U -> ( u adj u ) = A ) | 
						
							| 6 | 5 | dmeqd |  |-  ( u = U -> dom ( u adj u ) = dom A ) | 
						
							| 7 | 5 | fveq1d |  |-  ( u = U -> ( ( u adj u ) ` t ) = ( A ` t ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( u = U -> ( ( ( u adj u ) ` t ) = t <-> ( A ` t ) = t ) ) | 
						
							| 9 | 6 8 | rabeqbidv |  |-  ( u = U -> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } = { t e. dom A | ( A ` t ) = t } ) | 
						
							| 10 |  | df-hmo |  |-  HmOp = ( u e. NrmCVec |-> { t e. dom ( u adj u ) | ( ( u adj u ) ` t ) = t } ) | 
						
							| 11 |  | ovex |  |-  ( U adj U ) e. _V | 
						
							| 12 | 2 11 | eqeltri |  |-  A e. _V | 
						
							| 13 | 12 | dmex |  |-  dom A e. _V | 
						
							| 14 | 13 | rabex |  |-  { t e. dom A | ( A ` t ) = t } e. _V | 
						
							| 15 | 9 10 14 | fvmpt |  |-  ( U e. NrmCVec -> ( HmOp ` U ) = { t e. dom A | ( A ` t ) = t } ) | 
						
							| 16 | 1 15 | eqtrid |  |-  ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) |