Metamath Proof Explorer


Theorem blof

Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blof.1
|- X = ( BaseSet ` U )
blof.2
|- Y = ( BaseSet ` W )
blof.5
|- B = ( U BLnOp W )
Assertion blof
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y )

Proof

Step Hyp Ref Expression
1 blof.1
 |-  X = ( BaseSet ` U )
2 blof.2
 |-  Y = ( BaseSet ` W )
3 blof.5
 |-  B = ( U BLnOp W )
4 eqid
 |-  ( U LnOp W ) = ( U LnOp W )
5 4 3 bloln
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) )
6 1 2 4 lnof
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) -> T : X --> Y )
7 5 6 syld3an3
 |-  ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y )