Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blof.1 | |- X = ( BaseSet ` U ) |
|
| blof.2 | |- Y = ( BaseSet ` W ) |
||
| blof.5 | |- B = ( U BLnOp W ) |
||
| Assertion | blof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blof.1 | |- X = ( BaseSet ` U ) |
|
| 2 | blof.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | blof.5 | |- B = ( U BLnOp W ) |
|
| 4 | eqid | |- ( U LnOp W ) = ( U LnOp W ) |
|
| 5 | 4 3 | bloln | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) |
| 6 | 1 2 4 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) -> T : X --> Y ) |
| 7 | 5 6 | syld3an3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y ) |