Metamath Proof Explorer


Theorem blof

Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blof.1 X=BaseSetU
blof.2 Y=BaseSetW
blof.5 B=UBLnOpW
Assertion blof UNrmCVecWNrmCVecTBT:XY

Proof

Step Hyp Ref Expression
1 blof.1 X=BaseSetU
2 blof.2 Y=BaseSetW
3 blof.5 B=UBLnOpW
4 eqid ULnOpW=ULnOpW
5 4 3 bloln UNrmCVecWNrmCVecTBTULnOpW
6 1 2 4 lnof UNrmCVecWNrmCVecTULnOpWT:XY
7 5 6 syld3an3 UNrmCVecWNrmCVecTBT:XY