Metamath Proof Explorer


Theorem blssopn

Description: The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1
|- J = ( MetOpen ` D )
Assertion blssopn
|- ( D e. ( *Met ` X ) -> ran ( ball ` D ) C_ J )

Proof

Step Hyp Ref Expression
1 mopni.1
 |-  J = ( MetOpen ` D )
2 blbas
 |-  ( D e. ( *Met ` X ) -> ran ( ball ` D ) e. TopBases )
3 bastg
 |-  ( ran ( ball ` D ) e. TopBases -> ran ( ball ` D ) C_ ( topGen ` ran ( ball ` D ) ) )
4 2 3 syl
 |-  ( D e. ( *Met ` X ) -> ran ( ball ` D ) C_ ( topGen ` ran ( ball ` D ) ) )
5 1 mopnval
 |-  ( D e. ( *Met ` X ) -> J = ( topGen ` ran ( ball ` D ) ) )
6 4 5 sseqtrrd
 |-  ( D e. ( *Met ` X ) -> ran ( ball ` D ) C_ J )