Metamath Proof Explorer


Theorem unimopn

Description: The union of a collection of open sets of a metric space is open. Theorem T2 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1
|- J = ( MetOpen ` D )
Assertion unimopn
|- ( ( D e. ( *Met ` X ) /\ A C_ J ) -> U. A e. J )

Proof

Step Hyp Ref Expression
1 mopni.1
 |-  J = ( MetOpen ` D )
2 1 mopntop
 |-  ( D e. ( *Met ` X ) -> J e. Top )
3 uniopn
 |-  ( ( J e. Top /\ A C_ J ) -> U. A e. J )
4 2 3 sylan
 |-  ( ( D e. ( *Met ` X ) /\ A C_ J ) -> U. A e. J )