Metamath Proof Explorer


Theorem unimopn

Description: The union of a collection of open sets of a metric space is open. Theorem T2 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion unimopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝐽 )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
3 uniopn ( ( 𝐽 ∈ Top ∧ 𝐴𝐽 ) → 𝐴𝐽 )
4 2 3 sylan ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝐽 )