Description: The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mopni.1 | β’ π½ = ( MetOpen β π· ) | |
Assertion | mopnin | β’ ( ( π· β ( βMet β π ) β§ π΄ β π½ β§ π΅ β π½ ) β ( π΄ β© π΅ ) β π½ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopni.1 | β’ π½ = ( MetOpen β π· ) | |
2 | 1 | mopntop | β’ ( π· β ( βMet β π ) β π½ β Top ) |
3 | inopn | β’ ( ( π½ β Top β§ π΄ β π½ β§ π΅ β π½ ) β ( π΄ β© π΅ ) β π½ ) | |
4 | 2 3 | syl3an1 | β’ ( ( π· β ( βMet β π ) β§ π΄ β π½ β§ π΅ β π½ ) β ( π΄ β© π΅ ) β π½ ) |