Metamath Proof Explorer
		
		
		
		Description:  The intersection of two open sets of a metric space is open.
       (Contributed by NM, 4-Sep-2006)  (Revised by Mario Carneiro, 23-Dec-2013)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | mopni.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
				
					|  | Assertion | mopnin | ⊢  ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝐵  ∈  𝐽 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐽 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mopni.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 | 1 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 3 |  | inopn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ∈  𝐽  ∧  𝐵  ∈  𝐽 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐽 ) | 
						
							| 4 | 2 3 | syl3an1 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝐵  ∈  𝐽 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐽 ) |