Metamath Proof Explorer
		
		
		
		Description:  The empty set is an open set of a metric space.  Part of Theorem T1 of
       Kreyszig p. 19.  (Contributed by NM, 4-Sep-2006)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | mopni.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
				
					|  | Assertion | mopn0 | ⊢  ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ∅  ∈  𝐽 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mopni.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 | 1 | mopntop | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 3 |  | 0opn | ⊢ ( 𝐽  ∈  Top  →  ∅  ∈  𝐽 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ∅  ∈  𝐽 ) |