Description: The empty set is an open set of a metric space. Part of Theorem T1 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | |- J = ( MetOpen ` D ) | |
| Assertion | mopn0 | |- ( D e. ( *Met ` X ) -> (/) e. J ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mopni.1 | |- J = ( MetOpen ` D ) | |
| 2 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) | 
| 3 | 0opn | |- ( J e. Top -> (/) e. J ) | |
| 4 | 2 3 | syl | |- ( D e. ( *Met ` X ) -> (/) e. J ) |