Metamath Proof Explorer


Theorem blssopn

Description: The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion blssopn D ∞Met X ran ball D J

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 blbas D ∞Met X ran ball D TopBases
3 bastg ran ball D TopBases ran ball D topGen ran ball D
4 2 3 syl D ∞Met X ran ball D topGen ran ball D
5 1 mopnval D ∞Met X J = topGen ran ball D
6 4 5 sseqtrrd D ∞Met X ran ball D J