Metamath Proof Explorer


Theorem blbas

Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006) (Revised by Mario Carneiro, 15-Jan-2014)

Ref Expression
Assertion blbas D∞MetXranballDTopBases

Proof

Step Hyp Ref Expression
1 blin2 D∞MetXzxyxranballDyranballDr+zballDrxy
2 simpll D∞MetXzxyxranballDyranballDD∞MetX
3 elinel1 zxyzx
4 elunii zxxranballDzranballD
5 3 4 sylan zxyxranballDzranballD
6 5 ad2ant2lr D∞MetXzxyxranballDyranballDzranballD
7 unirnbl D∞MetXranballD=X
8 7 ad2antrr D∞MetXzxyxranballDyranballDranballD=X
9 6 8 eleqtrd D∞MetXzxyxranballDyranballDzX
10 blssex D∞MetXzXbranballDzbbxyr+zballDrxy
11 2 9 10 syl2anc D∞MetXzxyxranballDyranballDbranballDzbbxyr+zballDrxy
12 1 11 mpbird D∞MetXzxyxranballDyranballDbranballDzbbxy
13 12 ex D∞MetXzxyxranballDyranballDbranballDzbbxy
14 13 ralrimdva D∞MetXxranballDyranballDzxybranballDzbbxy
15 14 ralrimivv D∞MetXxranballDyranballDzxybranballDzbbxy
16 fvex ballDV
17 16 rnex ranballDV
18 isbasis2g ranballDVranballDTopBasesxranballDyranballDzxybranballDzbbxy
19 17 18 ax-mp ranballDTopBasesxranballDyranballDzxybranballDzbbxy
20 15 19 sylibr D∞MetXranballDTopBases