Metamath Proof Explorer


Theorem blres

Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014)

Ref Expression
Hypothesis blres.2 C=DY×Y
Assertion blres D∞MetXPXYR*PballCR=PballDRY

Proof

Step Hyp Ref Expression
1 blres.2 C=DY×Y
2 elinel2 PXYPY
3 1 oveqi PCx=PDY×Yx
4 ovres PYxYPDY×Yx=PDx
5 3 4 eqtrid PYxYPCx=PDx
6 2 5 sylan PXYxYPCx=PDx
7 6 breq1d PXYxYPCx<RPDx<R
8 7 anbi2d PXYxYxXPCx<RxXPDx<R
9 8 pm5.32da PXYxYxXPCx<RxYxXPDx<R
10 9 3ad2ant2 D∞MetXPXYR*xYxXPCx<RxYxXPDx<R
11 elin xXYxXxY
12 11 biancomi xXYxYxX
13 12 anbi1i xXYPCx<RxYxXPCx<R
14 anass xYxXPCx<RxYxXPCx<R
15 13 14 bitri xXYPCx<RxYxXPCx<R
16 ancom xXPDx<RxYxYxXPDx<R
17 10 15 16 3bitr4g D∞MetXPXYR*xXYPCx<RxXPDx<RxY
18 xmetres D∞MetXDY×Y∞MetXY
19 1 18 eqeltrid D∞MetXC∞MetXY
20 elbl C∞MetXYPXYR*xPballCRxXYPCx<R
21 19 20 syl3an1 D∞MetXPXYR*xPballCRxXYPCx<R
22 elin xPballDRYxPballDRxY
23 elinel1 PXYPX
24 elbl D∞MetXPXR*xPballDRxXPDx<R
25 23 24 syl3an2 D∞MetXPXYR*xPballDRxXPDx<R
26 25 anbi1d D∞MetXPXYR*xPballDRxYxXPDx<RxY
27 22 26 bitrid D∞MetXPXYR*xPballDRYxXPDx<RxY
28 17 21 27 3bitr4d D∞MetXPXYR*xPballCRxPballDRY
29 28 eqrdv D∞MetXPXYR*PballCR=PballDRY