Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1023.1 | |- E. x ( ph -> ps ) |
|
bnj1023.2 | |- ( ps -> ch ) |
||
Assertion | bnj1023 | |- E. x ( ph -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1023.1 | |- E. x ( ph -> ps ) |
|
2 | bnj1023.2 | |- ( ps -> ch ) |
|
3 | 2 | a1i | |- ( ( ph -> ps ) -> ( ps -> ch ) ) |
4 | 3 | ax-gen | |- A. x ( ( ph -> ps ) -> ( ps -> ch ) ) |
5 | exintr | |- ( A. x ( ( ph -> ps ) -> ( ps -> ch ) ) -> ( E. x ( ph -> ps ) -> E. x ( ( ph -> ps ) /\ ( ps -> ch ) ) ) ) |
|
6 | 4 1 5 | mp2 | |- E. x ( ( ph -> ps ) /\ ( ps -> ch ) ) |
7 | pm3.33 | |- ( ( ( ph -> ps ) /\ ( ps -> ch ) ) -> ( ph -> ch ) ) |
|
8 | 6 7 | bnj101 | |- E. x ( ph -> ch ) |