Metamath Proof Explorer


Theorem bnj1023

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1023.1
|- E. x ( ph -> ps )
bnj1023.2
|- ( ps -> ch )
Assertion bnj1023
|- E. x ( ph -> ch )

Proof

Step Hyp Ref Expression
1 bnj1023.1
 |-  E. x ( ph -> ps )
2 bnj1023.2
 |-  ( ps -> ch )
3 2 a1i
 |-  ( ( ph -> ps ) -> ( ps -> ch ) )
4 3 ax-gen
 |-  A. x ( ( ph -> ps ) -> ( ps -> ch ) )
5 exintr
 |-  ( A. x ( ( ph -> ps ) -> ( ps -> ch ) ) -> ( E. x ( ph -> ps ) -> E. x ( ( ph -> ps ) /\ ( ps -> ch ) ) ) )
6 4 1 5 mp2
 |-  E. x ( ( ph -> ps ) /\ ( ps -> ch ) )
7 pm3.33
 |-  ( ( ( ph -> ps ) /\ ( ps -> ch ) ) -> ( ph -> ch ) )
8 6 7 bnj101
 |-  E. x ( ph -> ch )