Metamath Proof Explorer


Theorem bnj1465

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1465.1
|- ( x = A -> ( ph <-> ps ) )
bnj1465.2
|- ( ps -> A. x ps )
bnj1465.3
|- ( ch -> ps )
Assertion bnj1465
|- ( ( ch /\ A e. V ) -> E. x ph )

Proof

Step Hyp Ref Expression
1 bnj1465.1
 |-  ( x = A -> ( ph <-> ps ) )
2 bnj1465.2
 |-  ( ps -> A. x ps )
3 bnj1465.3
 |-  ( ch -> ps )
4 3 adantr
 |-  ( ( ch /\ A e. V ) -> ps )
5 2 1 bnj1464
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )
6 5 adantl
 |-  ( ( ch /\ A e. V ) -> ( [. A / x ]. ph <-> ps ) )
7 4 6 mpbird
 |-  ( ( ch /\ A e. V ) -> [. A / x ]. ph )
8 7 spesbcd
 |-  ( ( ch /\ A e. V ) -> E. x ph )