Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1464.1 | |- ( ps -> A. x ps ) |
|
| bnj1464.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | bnj1464 | |- ( A e. V -> ( [. A / x ]. ph <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1464.1 | |- ( ps -> A. x ps ) |
|
| 2 | bnj1464.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | 1 | nf5i | |- F/ x ps |
| 4 | 3 2 | sbciegf | |- ( A e. V -> ( [. A / x ]. ph <-> ps ) ) |