| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj155.1 |
|- ( ps1 <-> [. g / f ]. ps' ) |
| 2 |
|
bnj155.2 |
|- ( ps' <-> A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 3 |
2
|
sbcbii |
|- ( [. g / f ]. ps' <-> [. g / f ]. A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 4 |
|
vex |
|- g e. _V |
| 5 |
|
fveq1 |
|- ( f = g -> ( f ` suc i ) = ( g ` suc i ) ) |
| 6 |
|
fveq1 |
|- ( f = g -> ( f ` i ) = ( g ` i ) ) |
| 7 |
6
|
iuneq1d |
|- ( f = g -> U_ y e. ( f ` i ) _pred ( y , A , R ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) |
| 8 |
5 7
|
eqeq12d |
|- ( f = g -> ( ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) <-> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) |
| 9 |
8
|
imbi2d |
|- ( f = g -> ( ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) ) |
| 10 |
9
|
ralbidv |
|- ( f = g -> ( A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) ) |
| 11 |
4 10
|
sbcie |
|- ( [. g / f ]. A. i e. _om ( suc i e. 1o -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) |
| 12 |
1 3 11
|
3bitri |
|- ( ps1 <-> A. i e. _om ( suc i e. 1o -> ( g ` suc i ) = U_ y e. ( g ` i ) _pred ( y , A , R ) ) ) |