Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj158.1 | |- D = ( _om \ { (/) } ) |
|
| Assertion | bnj158 | |- ( m e. D -> E. p e. _om m = suc p ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj158.1 | |- D = ( _om \ { (/) } ) |
|
| 2 | 1 | eleq2i | |- ( m e. D <-> m e. ( _om \ { (/) } ) ) |
| 3 | eldifsn | |- ( m e. ( _om \ { (/) } ) <-> ( m e. _om /\ m =/= (/) ) ) |
|
| 4 | 2 3 | bitri | |- ( m e. D <-> ( m e. _om /\ m =/= (/) ) ) |
| 5 | nnsuc | |- ( ( m e. _om /\ m =/= (/) ) -> E. p e. _om m = suc p ) |
|
| 6 | 4 5 | sylbi | |- ( m e. D -> E. p e. _om m = suc p ) |