Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj158.1 | ⊢ 𝐷 = ( ω ∖ { ∅ } ) | |
| Assertion | bnj158 | ⊢ ( 𝑚 ∈ 𝐷 → ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj158.1 | ⊢ 𝐷 = ( ω ∖ { ∅ } ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝑚 ∈ 𝐷 ↔ 𝑚 ∈ ( ω ∖ { ∅ } ) ) |
| 3 | eldifsn | ⊢ ( 𝑚 ∈ ( ω ∖ { ∅ } ) ↔ ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝑚 ∈ 𝐷 ↔ ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) ) |
| 5 | nnsuc | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑚 ≠ ∅ ) → ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 ) | |
| 6 | 4 5 | sylbi | ⊢ ( 𝑚 ∈ 𝐷 → ∃ 𝑝 ∈ ω 𝑚 = suc 𝑝 ) |