Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( a = A /\ m = M ) -> m = M ) |
2 |
1
|
dmeqd |
|- ( ( a = A /\ m = M ) -> dom m = dom M ) |
3 |
2
|
unieqd |
|- ( ( a = A /\ m = M ) -> U. dom m = U. dom M ) |
4 |
|
simpl |
|- ( ( a = A /\ m = M ) -> a = A ) |
5 |
3 4
|
difeq12d |
|- ( ( a = A /\ m = M ) -> ( U. dom m \ a ) = ( U. dom M \ A ) ) |
6 |
1 5
|
fveq12d |
|- ( ( a = A /\ m = M ) -> ( m ` ( U. dom m \ a ) ) = ( M ` ( U. dom M \ A ) ) ) |
7 |
6
|
eqeq1d |
|- ( ( a = A /\ m = M ) -> ( ( m ` ( U. dom m \ a ) ) = 0 <-> ( M ` ( U. dom M \ A ) ) = 0 ) ) |
8 |
|
df-ae |
|- ae = { <. a , m >. | ( m ` ( U. dom m \ a ) ) = 0 } |
9 |
7 8
|
brabga |
|- ( ( A e. dom M /\ M e. U. ran measures ) -> ( A ae M <-> ( M ` ( U. dom M \ A ) ) = 0 ) ) |
10 |
9
|
ancoms |
|- ( ( M e. U. ran measures /\ A e. dom M ) -> ( A ae M <-> ( M ` ( U. dom M \ A ) ) = 0 ) ) |