| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
| 2 |
1
|
dmeqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 ) |
| 3 |
2
|
unieqd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑀 ) → ∪ dom 𝑚 = ∪ dom 𝑀 ) |
| 4 |
|
simpl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑀 ) → 𝑎 = 𝐴 ) |
| 5 |
3 4
|
difeq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑀 ) → ( ∪ dom 𝑚 ∖ 𝑎 ) = ( ∪ dom 𝑀 ∖ 𝐴 ) ) |
| 6 |
1 5
|
fveq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑀 ) → ( 𝑚 ‘ ( ∪ dom 𝑚 ∖ 𝑎 ) ) = ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ 𝐴 ) ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 ‘ ( ∪ dom 𝑚 ∖ 𝑎 ) ) = 0 ↔ ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ 𝐴 ) ) = 0 ) ) |
| 8 |
|
df-ae |
⊢ a.e. = { 〈 𝑎 , 𝑚 〉 ∣ ( 𝑚 ‘ ( ∪ dom 𝑚 ∖ 𝑎 ) ) = 0 } |
| 9 |
7 8
|
brabga |
⊢ ( ( 𝐴 ∈ dom 𝑀 ∧ 𝑀 ∈ ∪ ran measures ) → ( 𝐴 a.e. 𝑀 ↔ ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ 𝐴 ) ) = 0 ) ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ 𝐴 ∈ dom 𝑀 ) → ( 𝐴 a.e. 𝑀 ↔ ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ 𝐴 ) ) = 0 ) ) |