Metamath Proof Explorer


Theorem brae

Description: 'almost everywhere' relation for a measure and a measurable set A . (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Assertion brae ( ( 𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀 ) → ( 𝐴 a.e. 𝑀 ↔ ( 𝑀 ‘ ( dom 𝑀𝐴 ) ) = 0 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑎 = 𝐴𝑚 = 𝑀 ) → 𝑚 = 𝑀 )
2 1 dmeqd ( ( 𝑎 = 𝐴𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 )
3 2 unieqd ( ( 𝑎 = 𝐴𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 )
4 simpl ( ( 𝑎 = 𝐴𝑚 = 𝑀 ) → 𝑎 = 𝐴 )
5 3 4 difeq12d ( ( 𝑎 = 𝐴𝑚 = 𝑀 ) → ( dom 𝑚𝑎 ) = ( dom 𝑀𝐴 ) )
6 1 5 fveq12d ( ( 𝑎 = 𝐴𝑚 = 𝑀 ) → ( 𝑚 ‘ ( dom 𝑚𝑎 ) ) = ( 𝑀 ‘ ( dom 𝑀𝐴 ) ) )
7 6 eqeq1d ( ( 𝑎 = 𝐴𝑚 = 𝑀 ) → ( ( 𝑚 ‘ ( dom 𝑚𝑎 ) ) = 0 ↔ ( 𝑀 ‘ ( dom 𝑀𝐴 ) ) = 0 ) )
8 df-ae a.e. = { ⟨ 𝑎 , 𝑚 ⟩ ∣ ( 𝑚 ‘ ( dom 𝑚𝑎 ) ) = 0 }
9 7 8 brabga ( ( 𝐴 ∈ dom 𝑀𝑀 ran measures ) → ( 𝐴 a.e. 𝑀 ↔ ( 𝑀 ‘ ( dom 𝑀𝐴 ) ) = 0 ) )
10 9 ancoms ( ( 𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀 ) → ( 𝐴 a.e. 𝑀 ↔ ( 𝑀 ‘ ( dom 𝑀𝐴 ) ) = 0 ) )