Step |
Hyp |
Ref |
Expression |
1 |
|
braew.1 |
⊢ ∪ dom 𝑀 = 𝑂 |
2 |
|
dmexg |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V ) |
3 |
2
|
uniexd |
⊢ ( 𝑀 ∈ ∪ ran measures → ∪ dom 𝑀 ∈ V ) |
4 |
1 3
|
eqeltrrid |
⊢ ( 𝑀 ∈ ∪ ran measures → 𝑂 ∈ V ) |
5 |
|
rabexg |
⊢ ( 𝑂 ∈ V → { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∈ V ) |
6 |
4 5
|
syl |
⊢ ( 𝑀 ∈ ∪ ran measures → { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∈ V ) |
7 |
|
simpr |
⊢ ( ( 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
8 |
7
|
dmeqd |
⊢ ( ( 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∧ 𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 ) |
9 |
8
|
unieqd |
⊢ ( ( 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∧ 𝑚 = 𝑀 ) → ∪ dom 𝑚 = ∪ dom 𝑀 ) |
10 |
|
simpl |
⊢ ( ( 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∧ 𝑚 = 𝑀 ) → 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) |
11 |
9 10
|
difeq12d |
⊢ ( ( 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∧ 𝑚 = 𝑀 ) → ( ∪ dom 𝑚 ∖ 𝑎 ) = ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) ) |
12 |
7 11
|
fveq12d |
⊢ ( ( 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∧ 𝑚 = 𝑀 ) → ( 𝑚 ‘ ( ∪ dom 𝑚 ∖ 𝑎 ) ) = ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( ( 𝑎 = { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 ‘ ( ∪ dom 𝑚 ∖ 𝑎 ) ) = 0 ↔ ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) ) = 0 ) ) |
14 |
|
df-ae |
⊢ a.e. = { 〈 𝑎 , 𝑚 〉 ∣ ( 𝑚 ‘ ( ∪ dom 𝑚 ∖ 𝑎 ) ) = 0 } |
15 |
13 14
|
brabga |
⊢ ( ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } ∈ V ∧ 𝑀 ∈ ∪ ran measures ) → ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } a.e. 𝑀 ↔ ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) ) = 0 ) ) |
16 |
6 15
|
mpancom |
⊢ ( 𝑀 ∈ ∪ ran measures → ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } a.e. 𝑀 ↔ ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) ) = 0 ) ) |
17 |
1
|
difeq1i |
⊢ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) = ( 𝑂 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) |
18 |
|
notrab |
⊢ ( 𝑂 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) = { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } |
19 |
17 18
|
eqtri |
⊢ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) = { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } |
20 |
19
|
fveq2i |
⊢ ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) ) = ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) |
21 |
20
|
eqeq1i |
⊢ ( ( 𝑀 ‘ ( ∪ dom 𝑀 ∖ { 𝑥 ∈ 𝑂 ∣ 𝜑 } ) ) = 0 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ) |
22 |
16 21
|
bitrdi |
⊢ ( 𝑀 ∈ ∪ ran measures → ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ) ) |