Metamath Proof Explorer


Theorem braew

Description: 'almost everywhere' relation for a measure M and a property ph (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Hypothesis braew.1 dom M = O
Assertion braew M ran measures x O | φ M-ae. M x O | ¬ φ = 0

Proof

Step Hyp Ref Expression
1 braew.1 dom M = O
2 dmexg M ran measures dom M V
3 2 uniexd M ran measures dom M V
4 1 3 eqeltrrid M ran measures O V
5 rabexg O V x O | φ V
6 4 5 syl M ran measures x O | φ V
7 simpr a = x O | φ m = M m = M
8 7 dmeqd a = x O | φ m = M dom m = dom M
9 8 unieqd a = x O | φ m = M dom m = dom M
10 simpl a = x O | φ m = M a = x O | φ
11 9 10 difeq12d a = x O | φ m = M dom m a = dom M x O | φ
12 7 11 fveq12d a = x O | φ m = M m dom m a = M dom M x O | φ
13 12 eqeq1d a = x O | φ m = M m dom m a = 0 M dom M x O | φ = 0
14 df-ae ae = a m | m dom m a = 0
15 13 14 brabga x O | φ V M ran measures x O | φ M-ae. M dom M x O | φ = 0
16 6 15 mpancom M ran measures x O | φ M-ae. M dom M x O | φ = 0
17 1 difeq1i dom M x O | φ = O x O | φ
18 notrab O x O | φ = x O | ¬ φ
19 17 18 eqtri dom M x O | φ = x O | ¬ φ
20 19 fveq2i M dom M x O | φ = M x O | ¬ φ
21 20 eqeq1i M dom M x O | φ = 0 M x O | ¬ φ = 0
22 16 21 bitrdi M ran measures x O | φ M-ae. M x O | ¬ φ = 0