Metamath Proof Explorer


Theorem truae

Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Hypotheses truae.1 dom M = O
truae.2 φ M ran measures
truae.3 φ ψ
Assertion truae φ x O | ψ M-ae.

Proof

Step Hyp Ref Expression
1 truae.1 dom M = O
2 truae.2 φ M ran measures
3 truae.3 φ ψ
4 3 pm2.24d φ ¬ ψ x
5 4 ralrimivw φ x O ¬ ψ x
6 rabss x O | ¬ ψ x O ¬ ψ x
7 5 6 sylibr φ x O | ¬ ψ
8 ss0 x O | ¬ ψ x O | ¬ ψ =
9 7 8 syl φ x O | ¬ ψ =
10 9 fveq2d φ M x O | ¬ ψ = M
11 measbasedom M ran measures M measures dom M
12 measvnul M measures dom M M = 0
13 11 12 sylbi M ran measures M = 0
14 2 13 syl φ M = 0
15 10 14 eqtrd φ M x O | ¬ ψ = 0
16 1 braew M ran measures x O | ψ M-ae. M x O | ¬ ψ = 0
17 2 16 syl φ x O | ψ M-ae. M x O | ¬ ψ = 0
18 15 17 mpbird φ x O | ψ M-ae.