Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
The 'almost everywhere' relation
truae
Next ⟩
aean
Metamath Proof Explorer
Ascii
Unicode
Theorem
truae
Description:
A truth holds almost everywhere.
(Contributed by
Thierry Arnoux
, 20-Oct-2017)
Ref
Expression
Hypotheses
truae.1
⊢
⋃
dom
⁡
M
=
O
truae.2
⊢
φ
→
M
∈
⋃
ran
⁡
measures
truae.3
⊢
φ
→
ψ
Assertion
truae
⊢
φ
→
x
∈
O
|
ψ
M
-ae.
Proof
Step
Hyp
Ref
Expression
1
truae.1
⊢
⋃
dom
⁡
M
=
O
2
truae.2
⊢
φ
→
M
∈
⋃
ran
⁡
measures
3
truae.3
⊢
φ
→
ψ
4
3
pm2.24d
⊢
φ
→
¬
ψ
→
x
∈
∅
5
4
ralrimivw
⊢
φ
→
∀
x
∈
O
¬
ψ
→
x
∈
∅
6
rabss
⊢
x
∈
O
|
¬
ψ
⊆
∅
↔
∀
x
∈
O
¬
ψ
→
x
∈
∅
7
5
6
sylibr
⊢
φ
→
x
∈
O
|
¬
ψ
⊆
∅
8
ss0
⊢
x
∈
O
|
¬
ψ
⊆
∅
→
x
∈
O
|
¬
ψ
=
∅
9
7
8
syl
⊢
φ
→
x
∈
O
|
¬
ψ
=
∅
10
9
fveq2d
⊢
φ
→
M
⁡
x
∈
O
|
¬
ψ
=
M
⁡
∅
11
measbasedom
⊢
M
∈
⋃
ran
⁡
measures
↔
M
∈
measures
⁡
dom
⁡
M
12
measvnul
⊢
M
∈
measures
⁡
dom
⁡
M
→
M
⁡
∅
=
0
13
11
12
sylbi
⊢
M
∈
⋃
ran
⁡
measures
→
M
⁡
∅
=
0
14
2
13
syl
⊢
φ
→
M
⁡
∅
=
0
15
10
14
eqtrd
⊢
φ
→
M
⁡
x
∈
O
|
¬
ψ
=
0
16
1
braew
⊢
M
∈
⋃
ran
⁡
measures
→
x
∈
O
|
ψ
M
-ae.
↔
M
⁡
x
∈
O
|
¬
ψ
=
0
17
2
16
syl
⊢
φ
→
x
∈
O
|
ψ
M
-ae.
↔
M
⁡
x
∈
O
|
¬
ψ
=
0
18
15
17
mpbird
⊢
φ
→
x
∈
O
|
ψ
M
-ae.