| Step |
Hyp |
Ref |
Expression |
| 1 |
|
truae.1 |
|- U. dom M = O |
| 2 |
|
truae.2 |
|- ( ph -> M e. U. ran measures ) |
| 3 |
|
truae.3 |
|- ( ph -> ps ) |
| 4 |
3
|
pm2.24d |
|- ( ph -> ( -. ps -> x e. (/) ) ) |
| 5 |
4
|
ralrimivw |
|- ( ph -> A. x e. O ( -. ps -> x e. (/) ) ) |
| 6 |
|
rabss |
|- ( { x e. O | -. ps } C_ (/) <-> A. x e. O ( -. ps -> x e. (/) ) ) |
| 7 |
5 6
|
sylibr |
|- ( ph -> { x e. O | -. ps } C_ (/) ) |
| 8 |
|
ss0 |
|- ( { x e. O | -. ps } C_ (/) -> { x e. O | -. ps } = (/) ) |
| 9 |
7 8
|
syl |
|- ( ph -> { x e. O | -. ps } = (/) ) |
| 10 |
9
|
fveq2d |
|- ( ph -> ( M ` { x e. O | -. ps } ) = ( M ` (/) ) ) |
| 11 |
|
measbasedom |
|- ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) |
| 12 |
|
measvnul |
|- ( M e. ( measures ` dom M ) -> ( M ` (/) ) = 0 ) |
| 13 |
11 12
|
sylbi |
|- ( M e. U. ran measures -> ( M ` (/) ) = 0 ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( M ` (/) ) = 0 ) |
| 15 |
10 14
|
eqtrd |
|- ( ph -> ( M ` { x e. O | -. ps } ) = 0 ) |
| 16 |
1
|
braew |
|- ( M e. U. ran measures -> ( { x e. O | ps } ae M <-> ( M ` { x e. O | -. ps } ) = 0 ) ) |
| 17 |
2 16
|
syl |
|- ( ph -> ( { x e. O | ps } ae M <-> ( M ` { x e. O | -. ps } ) = 0 ) ) |
| 18 |
15 17
|
mpbird |
|- ( ph -> { x e. O | ps } ae M ) |