Metamath Proof Explorer


Theorem truae

Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Hypotheses truae.1
|- U. dom M = O
truae.2
|- ( ph -> M e. U. ran measures )
truae.3
|- ( ph -> ps )
Assertion truae
|- ( ph -> { x e. O | ps } ae M )

Proof

Step Hyp Ref Expression
1 truae.1
 |-  U. dom M = O
2 truae.2
 |-  ( ph -> M e. U. ran measures )
3 truae.3
 |-  ( ph -> ps )
4 3 pm2.24d
 |-  ( ph -> ( -. ps -> x e. (/) ) )
5 4 ralrimivw
 |-  ( ph -> A. x e. O ( -. ps -> x e. (/) ) )
6 rabss
 |-  ( { x e. O | -. ps } C_ (/) <-> A. x e. O ( -. ps -> x e. (/) ) )
7 5 6 sylibr
 |-  ( ph -> { x e. O | -. ps } C_ (/) )
8 ss0
 |-  ( { x e. O | -. ps } C_ (/) -> { x e. O | -. ps } = (/) )
9 7 8 syl
 |-  ( ph -> { x e. O | -. ps } = (/) )
10 9 fveq2d
 |-  ( ph -> ( M ` { x e. O | -. ps } ) = ( M ` (/) ) )
11 measbasedom
 |-  ( M e. U. ran measures <-> M e. ( measures ` dom M ) )
12 measvnul
 |-  ( M e. ( measures ` dom M ) -> ( M ` (/) ) = 0 )
13 11 12 sylbi
 |-  ( M e. U. ran measures -> ( M ` (/) ) = 0 )
14 2 13 syl
 |-  ( ph -> ( M ` (/) ) = 0 )
15 10 14 eqtrd
 |-  ( ph -> ( M ` { x e. O | -. ps } ) = 0 )
16 1 braew
 |-  ( M e. U. ran measures -> ( { x e. O | ps } ae M <-> ( M ` { x e. O | -. ps } ) = 0 ) )
17 2 16 syl
 |-  ( ph -> ( { x e. O | ps } ae M <-> ( M ` { x e. O | -. ps } ) = 0 ) )
18 15 17 mpbird
 |-  ( ph -> { x e. O | ps } ae M )