Step |
Hyp |
Ref |
Expression |
1 |
|
truae.1 |
|- U. dom M = O |
2 |
|
truae.2 |
|- ( ph -> M e. U. ran measures ) |
3 |
|
truae.3 |
|- ( ph -> ps ) |
4 |
3
|
pm2.24d |
|- ( ph -> ( -. ps -> x e. (/) ) ) |
5 |
4
|
ralrimivw |
|- ( ph -> A. x e. O ( -. ps -> x e. (/) ) ) |
6 |
|
rabss |
|- ( { x e. O | -. ps } C_ (/) <-> A. x e. O ( -. ps -> x e. (/) ) ) |
7 |
5 6
|
sylibr |
|- ( ph -> { x e. O | -. ps } C_ (/) ) |
8 |
|
ss0 |
|- ( { x e. O | -. ps } C_ (/) -> { x e. O | -. ps } = (/) ) |
9 |
7 8
|
syl |
|- ( ph -> { x e. O | -. ps } = (/) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( M ` { x e. O | -. ps } ) = ( M ` (/) ) ) |
11 |
|
measbasedom |
|- ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) |
12 |
|
measvnul |
|- ( M e. ( measures ` dom M ) -> ( M ` (/) ) = 0 ) |
13 |
11 12
|
sylbi |
|- ( M e. U. ran measures -> ( M ` (/) ) = 0 ) |
14 |
2 13
|
syl |
|- ( ph -> ( M ` (/) ) = 0 ) |
15 |
10 14
|
eqtrd |
|- ( ph -> ( M ` { x e. O | -. ps } ) = 0 ) |
16 |
1
|
braew |
|- ( M e. U. ran measures -> ( { x e. O | ps } ae M <-> ( M ` { x e. O | -. ps } ) = 0 ) ) |
17 |
2 16
|
syl |
|- ( ph -> ( { x e. O | ps } ae M <-> ( M ` { x e. O | -. ps } ) = 0 ) ) |
18 |
15 17
|
mpbird |
|- ( ph -> { x e. O | ps } ae M ) |