Step |
Hyp |
Ref |
Expression |
1 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
2 |
|
ismeas |
|- ( S e. U. ran sigAlgebra -> ( M e. ( measures ` S ) <-> ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = sum* x e. y ( M ` x ) ) ) ) ) |
3 |
1 2
|
syl |
|- ( M e. ( measures ` S ) -> ( M e. ( measures ` S ) <-> ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = sum* x e. y ( M ` x ) ) ) ) ) |
4 |
3
|
ibi |
|- ( M e. ( measures ` S ) -> ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = sum* x e. y ( M ` x ) ) ) ) |
5 |
4
|
simp2d |
|- ( M e. ( measures ` S ) -> ( M ` (/) ) = 0 ) |