Metamath Proof Explorer


Theorem measge0

Description: A measure is nonnegative. (Contributed by Thierry Arnoux, 9-Mar-2018)

Ref Expression
Assertion measge0
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> 0 <_ ( M ` A ) )

Proof

Step Hyp Ref Expression
1 measvxrge0
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. ( 0 [,] +oo ) )
2 elxrge0
 |-  ( ( M ` A ) e. ( 0 [,] +oo ) <-> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) )
3 1 2 sylib
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) )
4 3 simprd
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> 0 <_ ( M ` A ) )