| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( M ` A ) <_ 0 ) |
| 2 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. ( 0 [,] +oo ) ) |
| 3 |
|
elxrge0 |
|- ( ( M ` A ) e. ( 0 [,] +oo ) <-> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) ) |
| 4 |
2 3
|
sylib |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) ) |
| 5 |
4
|
3adant3 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) ) |
| 6 |
5
|
simprd |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> 0 <_ ( M ` A ) ) |
| 7 |
5
|
simpld |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( M ` A ) e. RR* ) |
| 8 |
|
0xr |
|- 0 e. RR* |
| 9 |
|
xrletri3 |
|- ( ( ( M ` A ) e. RR* /\ 0 e. RR* ) -> ( ( M ` A ) = 0 <-> ( ( M ` A ) <_ 0 /\ 0 <_ ( M ` A ) ) ) ) |
| 10 |
7 8 9
|
sylancl |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( ( M ` A ) = 0 <-> ( ( M ` A ) <_ 0 /\ 0 <_ ( M ` A ) ) ) ) |
| 11 |
1 6 10
|
mpbir2and |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( M ` A ) = 0 ) |