Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( M ` A ) <_ 0 ) |
2 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. ( 0 [,] +oo ) ) |
3 |
|
elxrge0 |
|- ( ( M ` A ) e. ( 0 [,] +oo ) <-> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) ) |
4 |
2 3
|
sylib |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) ) |
5 |
4
|
3adant3 |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) ) |
6 |
5
|
simprd |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> 0 <_ ( M ` A ) ) |
7 |
5
|
simpld |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( M ` A ) e. RR* ) |
8 |
|
0xr |
|- 0 e. RR* |
9 |
|
xrletri3 |
|- ( ( ( M ` A ) e. RR* /\ 0 e. RR* ) -> ( ( M ` A ) = 0 <-> ( ( M ` A ) <_ 0 /\ 0 <_ ( M ` A ) ) ) ) |
10 |
7 8 9
|
sylancl |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( ( M ` A ) = 0 <-> ( ( M ` A ) <_ 0 /\ 0 <_ ( M ` A ) ) ) ) |
11 |
1 6 10
|
mpbir2and |
|- ( ( M e. ( measures ` S ) /\ A e. S /\ ( M ` A ) <_ 0 ) -> ( M ` A ) = 0 ) |