Step |
Hyp |
Ref |
Expression |
1 |
|
truae.1 |
⊢ ∪ dom 𝑀 = 𝑂 |
2 |
|
truae.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
3 |
|
truae.3 |
⊢ ( 𝜑 → 𝜓 ) |
4 |
3
|
pm2.24d |
⊢ ( 𝜑 → ( ¬ 𝜓 → 𝑥 ∈ ∅ ) ) |
5 |
4
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑂 ( ¬ 𝜓 → 𝑥 ∈ ∅ ) ) |
6 |
|
rabss |
⊢ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ∅ ↔ ∀ 𝑥 ∈ 𝑂 ( ¬ 𝜓 → 𝑥 ∈ ∅ ) ) |
7 |
5 6
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ∅ ) |
8 |
|
ss0 |
⊢ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ∅ → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } = ∅ ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } = ∅ ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = ( 𝑀 ‘ ∅ ) ) |
11 |
|
measbasedom |
⊢ ( 𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
12 |
|
measvnul |
⊢ ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
13 |
11 12
|
sylbi |
⊢ ( 𝑀 ∈ ∪ ran measures → ( 𝑀 ‘ ∅ ) = 0 ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
15 |
10 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) |
16 |
1
|
braew |
⊢ ( 𝑀 ∈ ∪ ran measures → ( { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) |
17 |
2 16
|
syl |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) |
18 |
15 17
|
mpbird |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ) |