| Step |
Hyp |
Ref |
Expression |
| 1 |
|
truae.1 |
⊢ ∪ dom 𝑀 = 𝑂 |
| 2 |
|
truae.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
| 3 |
|
truae.3 |
⊢ ( 𝜑 → 𝜓 ) |
| 4 |
3
|
pm2.24d |
⊢ ( 𝜑 → ( ¬ 𝜓 → 𝑥 ∈ ∅ ) ) |
| 5 |
4
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑂 ( ¬ 𝜓 → 𝑥 ∈ ∅ ) ) |
| 6 |
|
rabss |
⊢ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ∅ ↔ ∀ 𝑥 ∈ 𝑂 ( ¬ 𝜓 → 𝑥 ∈ ∅ ) ) |
| 7 |
5 6
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ∅ ) |
| 8 |
|
ss0 |
⊢ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ∅ → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } = ∅ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } = ∅ ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = ( 𝑀 ‘ ∅ ) ) |
| 11 |
|
measbasedom |
⊢ ( 𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 12 |
|
measvnul |
⊢ ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 13 |
11 12
|
sylbi |
⊢ ( 𝑀 ∈ ∪ ran measures → ( 𝑀 ‘ ∅ ) = 0 ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
| 15 |
10 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) |
| 16 |
1
|
braew |
⊢ ( 𝑀 ∈ ∪ ran measures → ( { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) |
| 17 |
2 16
|
syl |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) |
| 18 |
15 17
|
mpbird |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ) |