| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aean.1 |
⊢ ∪ dom 𝑀 = 𝑂 |
| 2 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = { 𝑥 ∈ 𝑂 ∣ ( ¬ 𝜑 ∨ ¬ 𝜓 ) } |
| 3 |
|
ianor |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
| 4 |
3
|
rabbii |
⊢ { 𝑥 ∈ 𝑂 ∣ ¬ ( 𝜑 ∧ 𝜓 ) } = { 𝑥 ∈ 𝑂 ∣ ( ¬ 𝜑 ∨ ¬ 𝜓 ) } |
| 5 |
2 4
|
eqtr4i |
⊢ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = { 𝑥 ∈ 𝑂 ∣ ¬ ( 𝜑 ∧ 𝜓 ) } |
| 6 |
5
|
fveq2i |
⊢ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ ( 𝜑 ∧ 𝜓 ) } ) |
| 7 |
6
|
eqeq1i |
⊢ ( ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ ( 𝜑 ∧ 𝜓 ) } ) = 0 ) |
| 8 |
|
measbasedom |
⊢ ( 𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 9 |
8
|
biimpi |
⊢ ( 𝑀 ∈ ∪ ran measures → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 12 |
|
simp2 |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ) |
| 14 |
|
dmmeas |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 15 |
|
unelsiga |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ∈ dom 𝑀 ) |
| 16 |
14 15
|
syl3an1 |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ∈ dom 𝑀 ) |
| 17 |
|
ssun1 |
⊢ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ⊆ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) |
| 18 |
17
|
a1i |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ⊆ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) |
| 19 |
10 12 16 18
|
measssd |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) ≤ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) ≤ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) |
| 22 |
20 21
|
breqtrd |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) ≤ 0 ) |
| 23 |
|
measle0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) ≤ 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ) |
| 24 |
11 13 22 23
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ) |
| 25 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) |
| 27 |
|
ssun2 |
⊢ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) |
| 28 |
27
|
a1i |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ⊆ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) |
| 29 |
10 25 16 28
|
measssd |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ≤ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ≤ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ) |
| 31 |
30 21
|
breqtrd |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ≤ 0 ) |
| 32 |
|
measle0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ≤ 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) |
| 33 |
11 26 31 32
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) |
| 34 |
24 33
|
jca |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) → ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) |
| 35 |
10
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 36 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 38 |
12
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ) |
| 39 |
25
|
adantr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) |
| 40 |
37 38 39 15
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ∈ dom 𝑀 ) |
| 41 |
35 38 39
|
measunl |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ≤ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) +𝑒 ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ) |
| 42 |
|
simprl |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ) |
| 43 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) |
| 44 |
42 43
|
oveq12d |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) +𝑒 ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = ( 0 +𝑒 0 ) ) |
| 45 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 46 |
|
xaddrid |
⊢ ( 0 ∈ ℝ* → ( 0 +𝑒 0 ) = 0 ) |
| 47 |
45 46
|
ax-mp |
⊢ ( 0 +𝑒 0 ) = 0 |
| 48 |
44 47
|
eqtrdi |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) +𝑒 ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) |
| 49 |
41 48
|
breqtrd |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ≤ 0 ) |
| 50 |
|
measle0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ∈ dom 𝑀 ∧ ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) ≤ 0 ) → ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) |
| 51 |
35 40 49 50
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) ∧ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) → ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ) |
| 52 |
34 51
|
impbida |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( ( 𝑀 ‘ ( { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∪ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) ) = 0 ↔ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) ) |
| 53 |
7 52
|
bitr3id |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ ( 𝜑 ∧ 𝜓 ) } ) = 0 ↔ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) ) |
| 54 |
1
|
braew |
⊢ ( 𝑀 ∈ ∪ ran measures → ( { 𝑥 ∈ 𝑂 ∣ ( 𝜑 ∧ 𝜓 ) } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ ( 𝜑 ∧ 𝜓 ) } ) = 0 ) ) |
| 55 |
54
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( { 𝑥 ∈ 𝑂 ∣ ( 𝜑 ∧ 𝜓 ) } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ ( 𝜑 ∧ 𝜓 ) } ) = 0 ) ) |
| 56 |
1
|
braew |
⊢ ( 𝑀 ∈ ∪ ran measures → ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ) ) |
| 57 |
1
|
braew |
⊢ ( 𝑀 ∈ ∪ ran measures → ( { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ↔ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) |
| 58 |
56 57
|
anbi12d |
⊢ ( 𝑀 ∈ ∪ ran measures → ( ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } a.e. 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ) ↔ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) ) |
| 59 |
58
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } a.e. 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ) ↔ ( ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ) = 0 ∧ ( 𝑀 ‘ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ) = 0 ) ) ) |
| 60 |
53 55 59
|
3bitr4d |
⊢ ( ( 𝑀 ∈ ∪ ran measures ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜑 } ∈ dom 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ ¬ 𝜓 } ∈ dom 𝑀 ) → ( { 𝑥 ∈ 𝑂 ∣ ( 𝜑 ∧ 𝜓 ) } a.e. 𝑀 ↔ ( { 𝑥 ∈ 𝑂 ∣ 𝜑 } a.e. 𝑀 ∧ { 𝑥 ∈ 𝑂 ∣ 𝜓 } a.e. 𝑀 ) ) ) |