| Step |
Hyp |
Ref |
Expression |
| 1 |
|
measunl.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
| 2 |
|
measunl.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 3 |
|
measunl.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| 4 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
| 5 |
4
|
fveq2i |
⊢ ( 𝑀 ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 6 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 8 |
|
difelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) |
| 9 |
7 2 3 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) |
| 10 |
|
disjdifr |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) |
| 12 |
|
measun |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) → ( 𝑀 ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
| 13 |
1 9 3 11 12
|
syl121anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
| 14 |
5 13
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
| 15 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 16 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 17 |
1 9 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 18 |
15 17
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ) |
| 19 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 20 |
1 2 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 21 |
15 20
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
| 22 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 23 |
1 3 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 24 |
15 23
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ* ) |
| 25 |
|
inelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) |
| 26 |
7 2 3 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) |
| 27 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 28 |
1 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 29 |
|
elxrge0 |
⊢ ( ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 30 |
28 29
|
sylib |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 31 |
30
|
simprd |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 32 |
15 28
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ* ) |
| 33 |
|
xraddge02 |
⊢ ( ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ* ) → ( 0 ≤ ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ≤ ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 34 |
18 32 33
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ≤ ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 35 |
31 34
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ≤ ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 36 |
|
uncom |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐵 ) ) |
| 37 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
| 38 |
36 37
|
eqtr3i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = 𝐴 |
| 39 |
38
|
fveq2i |
⊢ ( 𝑀 ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( 𝑀 ‘ 𝐴 ) |
| 40 |
|
incom |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐴 ∩ 𝐵 ) ) |
| 41 |
|
inindif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
| 42 |
40 41
|
eqtr3i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 44 |
|
measun |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∈ 𝑆 ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝑆 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) → ( 𝑀 ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 45 |
1 9 26 43 44
|
syl121anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 46 |
39 45
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 47 |
35 46
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ≤ ( 𝑀 ‘ 𝐴 ) ) |
| 48 |
|
xleadd1a |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝐵 ) ∈ ℝ* ) ∧ ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ≤ ( 𝑀 ‘ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
| 49 |
18 21 24 47 48
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
| 50 |
14 49
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |