Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
2 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
4 |
|
simp2l |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ∈ 𝑆 ) |
5 |
|
simp2r |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ∈ 𝑆 ) |
6 |
|
unelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ) |
8 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
9 |
8
|
a1i |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
10 |
|
measxun2 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) ) ) ) |
11 |
1 7 5 9 10
|
syl121anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) ) ) ) |
12 |
|
difun2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) |
13 |
|
uneq1 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = ( ∅ ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
14 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ∅ ) |
15 |
|
un0 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ∅ ) = ( 𝐴 ∖ 𝐵 ) |
16 |
14 15
|
eqtri |
⊢ ( ∅ ∪ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
17 |
13 16
|
eqtrdi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) ) |
18 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
19 |
17 18
|
eqtr3di |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ∖ 𝐵 ) = 𝐴 ) |
20 |
12 19
|
syl5eq |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) = 𝐴 ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝑀 ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) ) ) = ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ 𝐴 ) ) ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) ) ) = ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ 𝐴 ) ) ) |
24 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
25 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
26 |
24 25
|
sselid |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐵 ) ∈ ℝ* ) |
27 |
1 5 26
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑀 ‘ 𝐵 ) ∈ ℝ* ) |
28 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
29 |
24 28
|
sselid |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
30 |
1 4 29
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
31 |
|
xaddcom |
⊢ ( ( ( 𝑀 ‘ 𝐵 ) ∈ ℝ* ∧ ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) → ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ 𝐴 ) ) = ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
32 |
27 30 31
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑀 ‘ 𝐵 ) +𝑒 ( 𝑀 ‘ 𝐴 ) ) = ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |
33 |
11 23 32
|
3eqtrd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) ) |