Metamath Proof Explorer


Theorem measun

Description: The measure the union of two disjoint sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017)

Ref Expression
Assertion measun ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
2 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
3 2 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → 𝑆 ran sigAlgebra )
4 simp2l ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → 𝐴𝑆 )
5 simp2r ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → 𝐵𝑆 )
6 unelsiga ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )
7 3 4 5 6 syl3anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝐴𝐵 ) ∈ 𝑆 )
8 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
9 8 a1i ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → 𝐵 ⊆ ( 𝐴𝐵 ) )
10 measxun2 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( ( 𝐴𝐵 ) ∈ 𝑆𝐵𝑆 ) ∧ 𝐵 ⊆ ( 𝐴𝐵 ) ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴𝐵 ) ∖ 𝐵 ) ) ) )
11 1 7 5 9 10 syl121anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴𝐵 ) ∖ 𝐵 ) ) ) )
12 difun2 ( ( 𝐴𝐵 ) ∖ 𝐵 ) = ( 𝐴𝐵 )
13 inundif ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) = 𝐴
14 uneq1 ( ( 𝐴𝐵 ) = ∅ → ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) = ( ∅ ∪ ( 𝐴𝐵 ) ) )
15 uncom ( ∅ ∪ ( 𝐴𝐵 ) ) = ( ( 𝐴𝐵 ) ∪ ∅ )
16 un0 ( ( 𝐴𝐵 ) ∪ ∅ ) = ( 𝐴𝐵 )
17 15 16 eqtri ( ∅ ∪ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
18 14 17 eqtrdi ( ( 𝐴𝐵 ) = ∅ → ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 ) )
19 13 18 syl5reqr ( ( 𝐴𝐵 ) = ∅ → ( 𝐴𝐵 ) = 𝐴 )
20 12 19 syl5eq ( ( 𝐴𝐵 ) = ∅ → ( ( 𝐴𝐵 ) ∖ 𝐵 ) = 𝐴 )
21 20 fveq2d ( ( 𝐴𝐵 ) = ∅ → ( 𝑀 ‘ ( ( 𝐴𝐵 ) ∖ 𝐵 ) ) = ( 𝑀𝐴 ) )
22 21 oveq2d ( ( 𝐴𝐵 ) = ∅ → ( ( 𝑀𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴𝐵 ) ∖ 𝐵 ) ) ) = ( ( 𝑀𝐵 ) +𝑒 ( 𝑀𝐴 ) ) )
23 22 3ad2ant3 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( ( 𝑀𝐵 ) +𝑒 ( 𝑀 ‘ ( ( 𝐴𝐵 ) ∖ 𝐵 ) ) ) = ( ( 𝑀𝐵 ) +𝑒 ( 𝑀𝐴 ) ) )
24 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
25 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵𝑆 ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
26 24 25 sseldi ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵𝑆 ) → ( 𝑀𝐵 ) ∈ ℝ* )
27 1 5 26 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝑀𝐵 ) ∈ ℝ* )
28 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) → ( 𝑀𝐴 ) ∈ ( 0 [,] +∞ ) )
29 24 28 sseldi ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) → ( 𝑀𝐴 ) ∈ ℝ* )
30 1 4 29 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝑀𝐴 ) ∈ ℝ* )
31 xaddcom ( ( ( 𝑀𝐵 ) ∈ ℝ* ∧ ( 𝑀𝐴 ) ∈ ℝ* ) → ( ( 𝑀𝐵 ) +𝑒 ( 𝑀𝐴 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
32 27 30 31 syl2anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( ( 𝑀𝐵 ) +𝑒 ( 𝑀𝐴 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
33 11 23 32 3eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐴𝑆𝐵𝑆 ) ∧ ( 𝐴𝐵 ) = ∅ ) → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )