Step |
Hyp |
Ref |
Expression |
1 |
|
measvunilem.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
3 |
|
simp3l |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐴 ≼ ω ) |
4 |
1
|
abrexctf |
⊢ ( 𝐴 ≼ ω → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω ) |
6 |
|
ctex |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) |
8 |
|
simp2 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
9 |
|
eldifi |
⊢ ( 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) → 𝐵 ∈ 𝑆 ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
12 |
11
|
abrexss |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝑆 ) |
13 |
10 12
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝑆 ) |
14 |
8 13
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝑆 ) |
15 |
|
elpwg |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝒫 𝑆 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝑆 ) ) |
16 |
15
|
biimpar |
⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝑆 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝒫 𝑆 ) |
17 |
7 14 16
|
syl2anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝒫 𝑆 ) |
18 |
|
simp3r |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Disj 𝑥 ∈ 𝐴 𝐵 ) |
19 |
1
|
disjabrexf |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } 𝑧 ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Disj 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } 𝑧 ) |
21 |
|
measvun |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ 𝒫 𝑆 ∧ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ≼ ω ∧ Disj 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } 𝑧 ) ) → ( 𝑀 ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) = Σ* 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ( 𝑀 ‘ 𝑧 ) ) |
22 |
2 17 5 20 21
|
syl112anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) = Σ* 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ( 𝑀 ‘ 𝑧 ) ) |
23 |
|
dfiun2g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
24 |
23
|
fveq2d |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝑀 ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ) |
25 |
8 24
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝑀 ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑀 ‘ 𝑧 ) |
27 |
|
nfv |
⊢ Ⅎ 𝑥 𝑀 ∈ ( measures ‘ 𝑆 ) |
28 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) |
29 |
|
nfcv |
⊢ Ⅎ 𝑥 ≼ |
30 |
|
nfcv |
⊢ Ⅎ 𝑥 ω |
31 |
1 29 30
|
nfbr |
⊢ Ⅎ 𝑥 𝐴 ≼ ω |
32 |
|
nfdisj1 |
⊢ Ⅎ 𝑥 Disj 𝑥 ∈ 𝐴 𝐵 |
33 |
31 32
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) |
34 |
27 28 33
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑀 ‘ 𝑧 ) = ( 𝑀 ‘ 𝐵 ) ) |
36 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
37 |
3 36
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐴 ∈ V ) |
38 |
8
|
r19.21bi |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
39 |
34 1 38 18
|
disjdsct |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Fun ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
40 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
41 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
42 |
9 41
|
sylan2 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
43 |
40 38 42
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
44 |
26 34 1 35 37 39 43 38
|
esumc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Σ* 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝐵 ) = Σ* 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ( 𝑀 ‘ 𝑧 ) ) |
45 |
22 25 44
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = Σ* 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝐵 ) ) |