Step |
Hyp |
Ref |
Expression |
1 |
|
disjdsct.0 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
disjdsct.1 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
disjdsct.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( 𝑉 ∖ { ∅ } ) ) |
4 |
|
disjdsct.3 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
5 |
2
|
disjorsf |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
6 |
4 5
|
sylib |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
7 |
6
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
8 |
7
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
9 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴 ∧ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
10 |
|
eldifsni |
⊢ ( 𝐵 ∈ ( 𝑉 ∖ { ∅ } ) → 𝐵 ≠ ∅ ) |
11 |
3 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ ∅ ) |
12 |
11
|
sbimi |
⊢ ( [ 𝑖 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ) |
13 |
|
sban |
⊢ ( [ 𝑖 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑖 / 𝑥 ] 𝑥 ∈ 𝐴 ) ) |
14 |
1
|
sbf |
⊢ ( [ 𝑖 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
15 |
2
|
clelsb1fw |
⊢ ( [ 𝑖 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴 ) |
16 |
14 15
|
anbi12i |
⊢ ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑖 / 𝑥 ] 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ) |
17 |
13 16
|
bitri |
⊢ ( [ 𝑖 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ) |
18 |
|
sbsbc |
⊢ ( [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ↔ [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ) |
19 |
|
sbcne12 |
⊢ ( [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ↔ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑖 / 𝑥 ⦌ ∅ ) |
20 |
|
csb0 |
⊢ ⦋ 𝑖 / 𝑥 ⦌ ∅ = ∅ |
21 |
20
|
neeq2i |
⊢ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑖 / 𝑥 ⦌ ∅ ↔ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ∅ ) |
22 |
18 19 21
|
3bitri |
⊢ ( [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ↔ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ∅ ) |
23 |
12 17 22
|
3imtr3i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ∅ ) |
24 |
23
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴 ∧ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ∅ ) |
25 |
|
disj3 |
⊢ ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
26 |
25
|
biimpi |
⊢ ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
27 |
26
|
neeq1d |
⊢ ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ∅ ↔ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ≠ ∅ ) ) |
28 |
27
|
biimpa |
⊢ ( ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∧ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ∅ ) → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ≠ ∅ ) |
29 |
|
difn0 |
⊢ ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ≠ ∅ → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
30 |
28 29
|
syl |
⊢ ( ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∧ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ∅ ) → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
31 |
9 24 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐴 ∧ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
32 |
31
|
3anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
33 |
32
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
34 |
33
|
orim2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ( 𝑖 = 𝑗 ∨ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) ) |
35 |
8 34
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝑖 = 𝑗 ∨ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
36 |
35
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
37 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
38 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
39 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
40 |
1 2 38 39 3
|
funcnv4mpt |
⊢ ( 𝜑 → ( Fun ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) ) |
41 |
37 40
|
mpbird |
⊢ ( 𝜑 → Fun ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |