Metamath Proof Explorer


Theorem disjdsct

Description: A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv ) (Contributed by Thierry Arnoux, 28-Feb-2017)

Ref Expression
Hypotheses disjdsct.0 𝑥 𝜑
disjdsct.1 𝑥 𝐴
disjdsct.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 𝑉 ∖ { ∅ } ) )
disjdsct.3 ( 𝜑Disj 𝑥𝐴 𝐵 )
Assertion disjdsct ( 𝜑 → Fun ( 𝑥𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 disjdsct.0 𝑥 𝜑
2 disjdsct.1 𝑥 𝐴
3 disjdsct.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ( 𝑉 ∖ { ∅ } ) )
4 disjdsct.3 ( 𝜑Disj 𝑥𝐴 𝐵 )
5 2 disjorsf ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑖𝐴𝑗𝐴 ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) )
6 4 5 sylib ( 𝜑 → ∀ 𝑖𝐴𝑗𝐴 ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) )
7 6 r19.21bi ( ( 𝜑𝑖𝐴 ) → ∀ 𝑗𝐴 ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) )
8 7 r19.21bi ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑗𝐴 ) → ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) )
9 simpr3 ( ( 𝜑 ∧ ( 𝑖𝐴𝑗𝐴 ∧ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) ) → ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ )
10 eldifsni ( 𝐵 ∈ ( 𝑉 ∖ { ∅ } ) → 𝐵 ≠ ∅ )
11 3 10 syl ( ( 𝜑𝑥𝐴 ) → 𝐵 ≠ ∅ )
12 11 sbimi ( [ 𝑖 / 𝑥 ] ( 𝜑𝑥𝐴 ) → [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ )
13 sban ( [ 𝑖 / 𝑥 ] ( 𝜑𝑥𝐴 ) ↔ ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑖 / 𝑥 ] 𝑥𝐴 ) )
14 1 sbf ( [ 𝑖 / 𝑥 ] 𝜑𝜑 )
15 2 clelsb1fw ( [ 𝑖 / 𝑥 ] 𝑥𝐴𝑖𝐴 )
16 14 15 anbi12i ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑖 / 𝑥 ] 𝑥𝐴 ) ↔ ( 𝜑𝑖𝐴 ) )
17 13 16 bitri ( [ 𝑖 / 𝑥 ] ( 𝜑𝑥𝐴 ) ↔ ( 𝜑𝑖𝐴 ) )
18 sbsbc ( [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ↔ [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ )
19 sbcne12 ( [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ↔ 𝑖 / 𝑥 𝐵 𝑖 / 𝑥 ∅ )
20 csb0 𝑖 / 𝑥 ∅ = ∅
21 20 neeq2i ( 𝑖 / 𝑥 𝐵 𝑖 / 𝑥 ∅ ↔ 𝑖 / 𝑥 𝐵 ≠ ∅ )
22 18 19 21 3bitri ( [ 𝑖 / 𝑥 ] 𝐵 ≠ ∅ ↔ 𝑖 / 𝑥 𝐵 ≠ ∅ )
23 12 17 22 3imtr3i ( ( 𝜑𝑖𝐴 ) → 𝑖 / 𝑥 𝐵 ≠ ∅ )
24 23 3ad2antr1 ( ( 𝜑 ∧ ( 𝑖𝐴𝑗𝐴 ∧ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) ) → 𝑖 / 𝑥 𝐵 ≠ ∅ )
25 disj3 ( ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ↔ 𝑖 / 𝑥 𝐵 = ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) )
26 25 biimpi ( ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ → 𝑖 / 𝑥 𝐵 = ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) )
27 26 neeq1d ( ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ → ( 𝑖 / 𝑥 𝐵 ≠ ∅ ↔ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) ≠ ∅ ) )
28 27 biimpa ( ( ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ∧ 𝑖 / 𝑥 𝐵 ≠ ∅ ) → ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) ≠ ∅ )
29 difn0 ( ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) ≠ ∅ → 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 )
30 28 29 syl ( ( ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ∧ 𝑖 / 𝑥 𝐵 ≠ ∅ ) → 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 )
31 9 24 30 syl2anc ( ( 𝜑 ∧ ( 𝑖𝐴𝑗𝐴 ∧ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) ) → 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 )
32 31 3anassrs ( ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑗𝐴 ) ∧ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) → 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 )
33 32 ex ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑗𝐴 ) → ( ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ → 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) )
34 33 orim2d ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑗𝐴 ) → ( ( 𝑖 = 𝑗 ∨ ( 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) = ∅ ) → ( 𝑖 = 𝑗 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) ) )
35 8 34 mpd ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑗𝐴 ) → ( 𝑖 = 𝑗 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) )
36 35 ralrimiva ( ( 𝜑𝑖𝐴 ) → ∀ 𝑗𝐴 ( 𝑖 = 𝑗 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) )
37 36 ralrimiva ( 𝜑 → ∀ 𝑖𝐴𝑗𝐴 ( 𝑖 = 𝑗 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) )
38 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
39 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
40 1 2 38 39 3 funcnv4mpt ( 𝜑 → ( Fun ( 𝑥𝐴𝐵 ) ↔ ∀ 𝑖𝐴𝑗𝐴 ( 𝑖 = 𝑗 𝑖 / 𝑥 𝐵 𝑗 / 𝑥 𝐵 ) ) )
41 37 40 mpbird ( 𝜑 → Fun ( 𝑥𝐴𝐵 ) )