| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑥 ∈ V |
| 2 |
|
vex |
⊢ 𝑦 ∈ V |
| 3 |
1 2
|
brelrn |
⊢ ( 𝑥 𝐴 𝑦 → 𝑦 ∈ ran 𝐴 ) |
| 4 |
3
|
pm4.71ri |
⊢ ( 𝑥 𝐴 𝑦 ↔ ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
| 5 |
4
|
mobii |
⊢ ( ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ∃* 𝑥 ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ) |
| 6 |
|
moanimv |
⊢ ( ∃* 𝑥 ( 𝑦 ∈ ran 𝐴 ∧ 𝑥 𝐴 𝑦 ) ↔ ( 𝑦 ∈ ran 𝐴 → ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
| 7 |
5 6
|
bitri |
⊢ ( ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ( 𝑦 ∈ ran 𝐴 → ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ ran 𝐴 → ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
| 9 |
|
funcnv2 |
⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∃* 𝑥 𝑥 𝐴 𝑦 ) |
| 10 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ran 𝐴 ∃* 𝑥 𝑥 𝐴 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ ran 𝐴 → ∃* 𝑥 𝑥 𝐴 𝑦 ) ) |
| 11 |
8 9 10
|
3bitr4i |
⊢ ( Fun ◡ 𝐴 ↔ ∀ 𝑦 ∈ ran 𝐴 ∃* 𝑥 𝑥 𝐴 𝑦 ) |