Step |
Hyp |
Ref |
Expression |
1 |
|
disjdsct.0 |
|- F/ x ph |
2 |
|
disjdsct.1 |
|- F/_ x A |
3 |
|
disjdsct.2 |
|- ( ( ph /\ x e. A ) -> B e. ( V \ { (/) } ) ) |
4 |
|
disjdsct.3 |
|- ( ph -> Disj_ x e. A B ) |
5 |
2
|
disjorsf |
|- ( Disj_ x e. A B <-> A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
6 |
4 5
|
sylib |
|- ( ph -> A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
7 |
6
|
r19.21bi |
|- ( ( ph /\ i e. A ) -> A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
8 |
7
|
r19.21bi |
|- ( ( ( ph /\ i e. A ) /\ j e. A ) -> ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
9 |
|
simpr3 |
|- ( ( ph /\ ( i e. A /\ j e. A /\ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) -> ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) |
10 |
|
eldifsni |
|- ( B e. ( V \ { (/) } ) -> B =/= (/) ) |
11 |
3 10
|
syl |
|- ( ( ph /\ x e. A ) -> B =/= (/) ) |
12 |
11
|
sbimi |
|- ( [ i / x ] ( ph /\ x e. A ) -> [ i / x ] B =/= (/) ) |
13 |
|
sban |
|- ( [ i / x ] ( ph /\ x e. A ) <-> ( [ i / x ] ph /\ [ i / x ] x e. A ) ) |
14 |
1
|
sbf |
|- ( [ i / x ] ph <-> ph ) |
15 |
2
|
clelsb1fw |
|- ( [ i / x ] x e. A <-> i e. A ) |
16 |
14 15
|
anbi12i |
|- ( ( [ i / x ] ph /\ [ i / x ] x e. A ) <-> ( ph /\ i e. A ) ) |
17 |
13 16
|
bitri |
|- ( [ i / x ] ( ph /\ x e. A ) <-> ( ph /\ i e. A ) ) |
18 |
|
sbsbc |
|- ( [ i / x ] B =/= (/) <-> [. i / x ]. B =/= (/) ) |
19 |
|
sbcne12 |
|- ( [. i / x ]. B =/= (/) <-> [_ i / x ]_ B =/= [_ i / x ]_ (/) ) |
20 |
|
csb0 |
|- [_ i / x ]_ (/) = (/) |
21 |
20
|
neeq2i |
|- ( [_ i / x ]_ B =/= [_ i / x ]_ (/) <-> [_ i / x ]_ B =/= (/) ) |
22 |
18 19 21
|
3bitri |
|- ( [ i / x ] B =/= (/) <-> [_ i / x ]_ B =/= (/) ) |
23 |
12 17 22
|
3imtr3i |
|- ( ( ph /\ i e. A ) -> [_ i / x ]_ B =/= (/) ) |
24 |
23
|
3ad2antr1 |
|- ( ( ph /\ ( i e. A /\ j e. A /\ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) -> [_ i / x ]_ B =/= (/) ) |
25 |
|
disj3 |
|- ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> [_ i / x ]_ B = ( [_ i / x ]_ B \ [_ j / x ]_ B ) ) |
26 |
25
|
biimpi |
|- ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) -> [_ i / x ]_ B = ( [_ i / x ]_ B \ [_ j / x ]_ B ) ) |
27 |
26
|
neeq1d |
|- ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) -> ( [_ i / x ]_ B =/= (/) <-> ( [_ i / x ]_ B \ [_ j / x ]_ B ) =/= (/) ) ) |
28 |
27
|
biimpa |
|- ( ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) /\ [_ i / x ]_ B =/= (/) ) -> ( [_ i / x ]_ B \ [_ j / x ]_ B ) =/= (/) ) |
29 |
|
difn0 |
|- ( ( [_ i / x ]_ B \ [_ j / x ]_ B ) =/= (/) -> [_ i / x ]_ B =/= [_ j / x ]_ B ) |
30 |
28 29
|
syl |
|- ( ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) /\ [_ i / x ]_ B =/= (/) ) -> [_ i / x ]_ B =/= [_ j / x ]_ B ) |
31 |
9 24 30
|
syl2anc |
|- ( ( ph /\ ( i e. A /\ j e. A /\ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) -> [_ i / x ]_ B =/= [_ j / x ]_ B ) |
32 |
31
|
3anassrs |
|- ( ( ( ( ph /\ i e. A ) /\ j e. A ) /\ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) -> [_ i / x ]_ B =/= [_ j / x ]_ B ) |
33 |
32
|
ex |
|- ( ( ( ph /\ i e. A ) /\ j e. A ) -> ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) -> [_ i / x ]_ B =/= [_ j / x ]_ B ) ) |
34 |
33
|
orim2d |
|- ( ( ( ph /\ i e. A ) /\ j e. A ) -> ( ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) -> ( i = j \/ [_ i / x ]_ B =/= [_ j / x ]_ B ) ) ) |
35 |
8 34
|
mpd |
|- ( ( ( ph /\ i e. A ) /\ j e. A ) -> ( i = j \/ [_ i / x ]_ B =/= [_ j / x ]_ B ) ) |
36 |
35
|
ralrimiva |
|- ( ( ph /\ i e. A ) -> A. j e. A ( i = j \/ [_ i / x ]_ B =/= [_ j / x ]_ B ) ) |
37 |
36
|
ralrimiva |
|- ( ph -> A. i e. A A. j e. A ( i = j \/ [_ i / x ]_ B =/= [_ j / x ]_ B ) ) |
38 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
39 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
40 |
1 2 38 39 3
|
funcnv4mpt |
|- ( ph -> ( Fun `' ( x e. A |-> B ) <-> A. i e. A A. j e. A ( i = j \/ [_ i / x ]_ B =/= [_ j / x ]_ B ) ) ) |
41 |
37 40
|
mpbird |
|- ( ph -> Fun `' ( x e. A |-> B ) ) |