| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumc.0 |
⊢ Ⅎ 𝑘 𝐷 |
| 2 |
|
esumc.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 3 |
|
esumc.2 |
⊢ Ⅎ 𝑘 𝐴 |
| 4 |
|
esumc.3 |
⊢ ( 𝑦 = 𝐶 → 𝐷 = 𝐵 ) |
| 5 |
|
esumc.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
esumc.5 |
⊢ ( 𝜑 → Fun ◡ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 7 |
|
esumc.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 8 |
|
esumc.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 10 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 |
| 11 |
10
|
nfab |
⊢ Ⅎ 𝑘 { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } |
| 12 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
| 13 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 15 |
3 14
|
abrexexd |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } ∈ V ) |
| 16 |
8
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ 𝑊 ) ) |
| 17 |
2 16
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ 𝑊 ) |
| 18 |
3
|
fnmptf |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐶 ∈ 𝑊 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 20 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
| 21 |
20
|
rnmpt |
⊢ ran ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } ) |
| 23 |
|
dff1o2 |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1-onto→ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } ↔ ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ∧ Fun ◡ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } ) ) |
| 24 |
19 6 22 23
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1-onto→ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
| 26 |
3
|
fvmpt2f |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 27 |
25 8 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 28 |
|
vex |
⊢ 𝑦 ∈ V |
| 29 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝐶 ↔ 𝑦 = 𝐶 ) ) |
| 30 |
29
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 ↔ ∃ 𝑘 ∈ 𝐴 𝑦 = 𝐶 ) ) |
| 31 |
28 30
|
elab |
⊢ ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } ↔ ∃ 𝑘 ∈ 𝐴 𝑦 = 𝐶 ) |
| 32 |
4
|
reximi |
⊢ ( ∃ 𝑘 ∈ 𝐴 𝑦 = 𝐶 → ∃ 𝑘 ∈ 𝐴 𝐷 = 𝐵 ) |
| 33 |
31 32
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } → ∃ 𝑘 ∈ 𝐴 𝐷 = 𝐵 ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 35 |
1 34
|
nfel |
⊢ Ⅎ 𝑘 𝐷 ∈ ( 0 [,] +∞ ) |
| 36 |
|
eleq1 |
⊢ ( 𝐷 = 𝐵 → ( 𝐷 ∈ ( 0 [,] +∞ ) ↔ 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
| 37 |
7 36
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐷 = 𝐵 → 𝐷 ∈ ( 0 [,] +∞ ) ) ) |
| 38 |
37
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ( 𝐷 = 𝐵 → 𝐷 ∈ ( 0 [,] +∞ ) ) ) ) |
| 39 |
2 35 38
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝐴 𝐷 = 𝐵 → 𝐷 ∈ ( 0 [,] +∞ ) ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐷 = 𝐵 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 41 |
33 40
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 42 |
2 1 9 11 3 12 4 15 24 27 41
|
esumf1o |
⊢ ( 𝜑 → Σ* 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } 𝐷 = Σ* 𝑘 ∈ 𝐴 𝐵 ) |
| 43 |
42
|
eqcomd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐶 } 𝐷 ) |