| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumrnmpt.0 |
⊢ Ⅎ 𝑘 𝐴 |
| 2 |
|
esumrnmpt.1 |
⊢ ( 𝑦 = 𝐵 → 𝐶 = 𝐷 ) |
| 3 |
|
esumrnmpt.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
esumrnmpt.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 5 |
|
esumrnmpt.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 𝑊 ∖ { ∅ } ) ) |
| 6 |
|
esumrnmpt.5 |
⊢ ( 𝜑 → Disj 𝑘 ∈ 𝐴 𝐵 ) |
| 7 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 8 |
7
|
rnmpt |
⊢ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } |
| 9 |
|
esumeq1 |
⊢ ( ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } → Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝐶 = Σ* 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } 𝐶 ) |
| 10 |
8 9
|
ax-mp |
⊢ Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝐶 = Σ* 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } 𝐶 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
| 12 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 13 |
12 1 5 6
|
disjdsct |
⊢ ( 𝜑 → Fun ◡ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
| 14 |
11 12 1 2 3 13 4 5
|
esumc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐷 = Σ* 𝑦 ∈ { 𝑧 ∣ ∃ 𝑘 ∈ 𝐴 𝑧 = 𝐵 } 𝐶 ) |
| 15 |
10 14
|
eqtr4id |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ 𝐴 𝐷 ) |